Skip to main content

Advertisement

Log in

NETosis in cancer: a critical analysis of the impact of cancer on neutrophil extracellular trap (NET) release in lung cancer patients vs. mice

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Neutrophils play a major role in tumor biology. Among other functions, neutrophils can release extracellular traps (NETs), mesh-like structures of decondensed chromatin fibers, in a process termed NETosis. Originally characterized as an antimicrobial mechanism, NETosis has been described in cancer, but cancer-related predisposition is not clear. In the current study, we investigated the predisposition of circulating neutrophils to release NETs in lung cancer and the impact of G-CSF on this function, comparing circulating neutrophils isolated from cancer patients to the LLC and AB12 mouse models. We find that neutrophils from both healthy donors and cancer patients display high NETotic potential, with 30–60% of cells undergoing NETosis upon PMA stimulation. In contrast, neutrophils isolated from tumor-bearing mice displayed only 4–5% NETotic cells, though significantly higher than naive controls (1–2%). Despite differential mechanisms of activation described, Ionomycin and PMA mainly triggered suicidal rather than vital NETosis. G-CSF secreting tumors did not increase NETotic rates in murine neutrophils, and direct G-CSF stimulation did not promote their NET release. In contrast, human neutrophils strongly responded to G-CSF stimulation resulting also in a higher response to PMA + G-CSF stimulation. Our data show clear differences in NETotic potentials between human and murine neutrophils. We do not find a predisposition of neutrophils to release NETs in lung cancer patients compared to healthy controls, whereas cancer may modulate neutrophils' NETotic potential in mice. G-CSF secreted from tumors differentially affects murine and human NETosis in cancer. These important differences should be considered in future studies of NETosis in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CitH3:

Citrullinated histone3

COPD:

Chronic obstructive pulmonary disease

EDTA:

Ethylenediaminetetraacetic acid 

fMLP:

N-Formylmethionyl-leucyl-phenylalanine

G-CSF:

Granulocyte colony stimulating factor

HDN:

High density neutrophils

HMGB1:

High mobility group box1

LDN:

Low density neutrophils

LLC:

Lewis lung carcinoma

LPS:

Lipopolysaccharide

MPO:

Myeloperoxidase

NET:

Neutrophil extracellular traps

PMA:

Phorbol myristate acetate

ROS:

Reactive oxygen species

TAN:

Tumor-associated neutrophils

TGFβ:

Transforming growth factor beta

References

  1. Koga Y, Matsuzaki A, Suminoe A, Hattori H, Hara T (2004) Neutrophil-derived tnf-related apoptosis-inducing ligand (trail): A novel mechanism of antitumor effect by neutrophils. Cancer Res 64:1037–1043

    Article  CAS  PubMed  Google Scholar 

  2. Jablonska E, Jablonski J, Marcinczyk M, Grabowska Z, Piotrowski L (2008) The release of soluble forms of trail and dr5 by neutrophils of oral cavity cancer patients. Folia Histochem Cytobiol 46:177–183

    Article  CAS  PubMed  Google Scholar 

  3. Granot Z, Henke E, Comen EA, King TA, Norton L, Benezra R (2011) Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20:300–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lopez-Lago MA, Posner S, Thodima VJ, Molina AM, Motzer RJ, Chaganti RS (2013) Neutrophil chemokines secreted by tumor cells mount a lung antimetastatic response during renal cell carcinoma progression. Oncogene 32:1752–1760

    Article  CAS  PubMed  Google Scholar 

  5. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil phenotype by tgf-beta: "N1" Versus "N2" Tan. Cancer Cell 16:183–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schmielau J, Finn OJ (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res 61:4756–4760

    CAS  PubMed  Google Scholar 

  7. Sagiv JY, Michaeli J, Assi S, Mishalian I, Kisos H, Levy L, Damti P, Lumbroso D, Polyansky L, Sionov RV et al (2015) Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep 10:562–573

    Article  CAS  PubMed  Google Scholar 

  8. Lang S, Bruderek K, Kaspar C, Hoing B, Kanaan O, Dominas N, Hussain T, Droege F, Eyth C, Hadaschik B et al (2018) Clinical relevance and suppressive capacity of human myeloid-derived suppressor cell subsets. Clin Cancer Res 24:4834–4844

    Article  CAS  PubMed  Google Scholar 

  9. Yamauchi Y, Safi S, Blattner C, Rathinasamy A, Umansky L, Juenger S, Warth A, Eichhorn M, Muley T, Herth FJF et al (2018) Circulating and tumor myeloid-derived suppressor cells in resectable non-small cell lung cancer. Am J Respir Crit Care Med 198:777–787

    Article  PubMed  Google Scholar 

  10. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    Article  CAS  PubMed  Google Scholar 

  11. Richardson JJR, Hendrickse C, Gao-Smith F, Thickett DR (2017) Neutrophil extracellular trap production in patients with colorectal cancer in vitro. Int J Inflam 2017:4915062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tohme S, Yazdani HO, Al-Khafaji AB, Chidi AP, Loughran P, Mowen K, Wang Y, Simmons RL, Huang H, Tsung A (2016) Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res 76:1367–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cools-Lartigue J, Spicer J, McDonald B, Gowing S, Chow S, Giannias B, Bourdeau F, Kubes P, Ferri L (2013) Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest 123:3446–3458

    Article  CAS  PubMed Central  Google Scholar 

  14. Park J, Wysocki RW, Amoozgar Z, Maiorino L, Fein MR, Jorns J, Schott AF, Kinugasa-Katayama Y, Lee Y, Won NH et al (2016) Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci Transl Med 8:361ra138

  15. Rayes RF, Mouhanna JG, Nicolau I, Bourdeau F, Giannias B, Rousseau S, Quail D, Walsh L, Sangwan V, Bertos N et al (2019) Primary tumors induce neutrophil extracellular traps with targetable metastasis promoting effects. JCI Insight 5

  16. Albrengues J, Shields MA, Ng D, Park CG, Ambrico A, Poindexter ME, Upadhyay P, Uyeminami DL, Pommier A, Kuttner V et al (2018) Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361

  17. Demers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR, Fuchs TA, Scadden DT, Wagner DD (2012) Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci USA 109:13076–13081

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cedervall J, Zhang Y, Huang H, Zhang L, Femel J, Dimberg A, Olsson AK (2015) Neutrophil extracellular traps accumulate in peripheral blood vessels and compromise organ function in tumor-bearing animals. Cancer Res 75:2653–2662

    Article  CAS  PubMed  Google Scholar 

  19. Leal AC, Mizurini DM, Gomes T, Rochael NC, Saraiva EM, Dias MS, Werneck CC, Sielski MS, Vicente CP, Monteiro RQ (2017) Tumor-derived exosomes induce the formation of neutrophil extracellular traps: Implications for the establishment of cancer-associated thrombosis. Sci Rep 7:6438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hisada Y, Grover SP, Maqsood A, Houston R, Ay C, Noubouossie DF, Cooley BC, Wallen H, Key NS, Thalin C et al (2019) Neutrophils and neutrophil extracellular traps enhance venous thrombosis in mice bearing human pancreatic tumors. Haematologica

  21. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 107:15880–15885

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yipp BG, Kubes P (2013) Netosis: How vital is it? Blood 122:2784–2794

    Article  CAS  PubMed  Google Scholar 

  23. Takei H, Araki A, Watanabe H, Ichinose A, Sendo F (1996) Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (pma) accompanied by changes different from typical apoptosis or necrosis. J Leukoc Biol 59:229–240

    Article  CAS  PubMed  Google Scholar 

  24. Hakkim A, Fuchs TA, Martinez NE, Hess S, Prinz H, Zychlinsky A, Waldmann H (2011) Activation of the raf-mek-erk pathway is required for neutrophil extracellular trap formation. Nat Chem Biol 7:75–77

    Article  CAS  PubMed  Google Scholar 

  25. Parker H, Dragunow M, Hampton MB, Kettle AJ, Winterbourn CC (2012) Requirements for nadph oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. J Leukoc Biol 92:841–849

    Article  CAS  PubMed  Google Scholar 

  26. Pilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD, Robbins SM, Green FH, Surette MG, Sugai M et al (2010) A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to staphylococcus aureus. J Immunol 185:7413–7425

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, Hayama R, Leonelli L, Han H, Grigoryev SA et al (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 184:205–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hoppenbrouwers T, Autar ASA, Sultan AR, Abraham TE, van Cappellen WA, Houtsmuller AB, van Wamel WJB, van Beusekom HMM, van Neck JW, de Maat MPM (2017) In vitro induction of netosis: Comprehensive live imaging comparison and systematic review. PLoS ONE 12:e0176472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Konig MF, Andrade F (2016) A critical reappraisal of neutrophil extracellular traps and netosis mimics based on differential requirements for protein citrullination. Front Immunol 7:461

    PubMed  PubMed Central  Google Scholar 

  30. Li RHL, Tablin F (2018) A comparative review of neutrophil extracellular traps in sepsis. Front Vet Sci 5:291

    Article  PubMed  PubMed Central  Google Scholar 

  31. Boeltz S, Amini P, Anders HJ, Andrade F, Bilyy R, Chatfield S, Cichon I, Clancy DM, Desai J, Dumych T et al (2019) To net or not to net: Current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death Differ 26:395–408

    Article  PubMed  PubMed Central  Google Scholar 

  32. Thalin C, Lundstrom S, Seignez C, Daleskog M, Lundstrom A, Henriksson P, Helleday T, Phillipson M, Wallen H, Demers M (2018) Citrullinated histone h3 as a novel prognostic blood marker in patients with advanced cancer. PLoS ONE 13:e0191231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Michaeli J, Shaul ME, Mishalian I, Hovav AH, Levy L, Zolotriov L, Granot Z, Fridlender ZG (2017) Tumor-associated neutrophils induce apoptosis of non-activated cd8 t-cells in a tnfalpha and no-dependent mechanism, promoting a tumor-supportive environment. Oncoimmunology 6:e1356965

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wolach O, Sellar RS, Martinod K, Cherpokova D, McConkey M, Chappell RJ, Silver AJ, Adams D, Castellano CA, Schneider RK et al (2018) Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med 10

  35. Yazdani HO, Roy E, Comerci AJ, van der Windt DJ, Zhang H, Huang H, Loughran P, Shiva S, Geller DA, Bartlett DL et al (2019) Neutrophil extracellular traps drive mitochondrial homeostasis in tumors to augment growth. Cancer Res 79:5626–5639

    Article  PubMed  PubMed Central  Google Scholar 

  36. Khan MA, Palaniyar N (2017) Transcriptional firing helps to drive netosis. Sci Rep 7:41749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Giaglis S, Stoikou M, Sur Chowdhury C, Schaefer G, Grimolizzi F, Rossi SW, Hoesli IM, Lapaire O, Hasler P, Hahn S (2016) Multimodal regulation of net formation in pregnancy: progesterone antagonizes the pro-netotic effect of estrogen and g-csf. Front Immunol 7:565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schoergenhofer C, Schwameis M, Wohlfarth P, Brostjan C, Abrams ST, Toh CH, Jilma B (2017) Granulocyte colony-stimulating factor (g-csf) increases histone-complexed DNA plasma levels in healthy volunteers. Clin Exp Med 17:243–249

    Article  CAS  PubMed  Google Scholar 

  39. Uchida T, Yamashita T, Araki A, Watanabe H, Sendo F (1997) Rifn-gamma-activated rat neutrophils induce tumor cell apoptosis by nitric oxide. Int J Cancer 71:231–236

    Article  CAS  PubMed  Google Scholar 

  40. Sparmann A, Bar-Sagi D (2004) Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6:447–458

    Article  CAS  PubMed  Google Scholar 

  41. Kobayashi Y (2008) The role of chemokines in neutrophil biology. Front Biosci 13:2400–2407

    Article  CAS  PubMed  Google Scholar 

  42. Shaul ME, Fridlender ZG (2018) Cancer-related circulating and tumor-associated neutrophils—subtypes, sources and function. FEBS J 285:4316–4342

    Article  CAS  PubMed  Google Scholar 

  43. Hsu BE, Tabaries S, Johnson RM, Andrzejewski S, Senecal J, Lehuede C, Annis MG, Ma EH, Vols S, Ramsay L et al (2019) Immature low-density neutrophils exhibit metabolic flexibility that facilitates breast cancer liver metastasis. Cell Rep 27(3902–3915):e3906

    Google Scholar 

  44. Demers M, Wong SL, Martinod K, Gallant M, Cabral JE, Wang Y, Wagner DD (2016) Priming of neutrophils toward netosis promotes tumor growth. Oncoimmunology 5:e1134073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Furze RC, Rankin SM (2008) Neutrophil mobilization and clearance in the bone marrow. Immunology 125:281–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nakamae-Akahori M, Kato T, Masuda S, Sakamoto E, Kutsuna H, Hato F, Nishizawa Y, Hino M, Kitagawa S (2006) Enhanced neutrophil motility by granulocyte colony-stimulating factor: The role of extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. Immunology 119:393–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Roilides E, Walsh TJ, Pizzo PA, Rubin M (1991) Granulocyte colony-stimulating factor enhances the phagocytic and bactericidal activity of normal and defective human neutrophils. J Infect Dis 163:579–583

    Article  CAS  PubMed  Google Scholar 

  48. Kitagawa S, Yuo A, Souza LM, Saito M, Miura Y, Takaku F (1987) Recombinant human granulocyte colony-stimulating factor enhances superoxide release in human granulocytes stimulated by the chemotactic peptide. Biochem Biophys Res Commun 144:1143–1146

    Article  CAS  PubMed  Google Scholar 

  49. Spiekermann K, Roesler J, Emmendoerffer A, Elsner J, Welte K (1997) Functional features of neutrophils induced by g-csf and gm-csf treatment: Differential effects and clinical implications. Leukemia 11:466–478

    Article  CAS  PubMed  Google Scholar 

  50. Azzara A, Carulli G, Rizzuti-Gullaci A, Capochiani E, Petrini M (2001) Lenograstim and filgrastim effects on neutrophil motility in patients undergoing chemotherapy: Evaluation by computer-assisted image analysis. Am J Hematol 66:306–307

    Article  CAS  PubMed  Google Scholar 

  51. Kawano M, Mabuchi S, Matsumoto Y, Sasano T, Takahashi R, Kuroda H, Kozasa K, Hashimoto K, Isobe A, Sawada K et al (2015) The significance of g-csf expression and myeloid-derived suppressor cells in the chemoresistance of uterine cervical cancer. Sci Rep 5:18217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li W, Zhang X, Chen Y, Xie Y, Liu J, Feng Q, Wang Y, Yuan W, Ma J (2016) G-csf is a key modulator of mdsc and could be a potential therapeutic target in colitis-associated colorectal cancers. Protein Cell 7:130–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wright TK, Gibson PG, Simpson JL, McDonald VM, Wood LG, Baines KJ (2016) Neutrophil extracellular traps are associated with inflammation in chronic airway disease. Respirology 21:467–475

    Article  PubMed  Google Scholar 

  54. Hu SC, Yu HS, Yen FL, Lin CL, Chen GS, Lan CC (2016) Neutrophil extracellular trap formation is increased in psoriasis and induces human beta-defensin-2 production in epidermal keratinocytes. Sci Rep 6:31119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hakkim A, Furnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, Herrmann M, Voll RE, Zychlinsky A (2010) Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci USA 107:9813–9818

    Article  PubMed  PubMed Central  Google Scholar 

  56. Villanueva E, Yalavarthi S, Berthier CC, Hodgin JB, Khandpur R, Lin AM, Rubin CJ, Zhao W, Olsen SH, Klinker M et al (2011) Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol 187:538–552

    Article  CAS  PubMed  Google Scholar 

  57. Demoruelle MK, Harrall KK, Ho L, Purmalek MM, Seto NL, Rothfuss HM, Weisman MH, Solomon JJ, Fischer A, Okamoto Y et al (2017) Anti-citrullinated protein antibodies are associated with neutrophil extracellular traps in the sputum in relatives of rheumatoid arthritis patients. Arthritis Rheumatol 69:1165–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Elsherif L, Sciaky N, Metts CA, Modasshir M, Rekleitis I, Burris CA, Walker JA, Ramadan N, Leisner TM, Holly SP et al (2019) Machine learning to quantitate neutrophil netosis. Sci Rep 9:16891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van Breda SV, Vokalova L, Neugebauer C, Rossi SW, Hahn S, Hasler P (2019) Computational methodologies for the in vitro and in situ quantification of neutrophil extracellular traps. Front Immunol 10:1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pratesi F, Dioni I, Tommasi C, Alcaro MC, Paolini I, Barbetti F, Boscaro F, Panza F, Puxeddu I, Rovero P et al (2014) Antibodies from patients with rheumatoid arthritis target citrullinated histone 4 contained in neutrophils extracellular traps. Ann Rheum Dis 73:1414–1422

    Article  CAS  PubMed  Google Scholar 

  61. Cherepanova AV, Tamkovich SN, Bryzgunova OE, Vlassov VV, Laktionov PP (2008) Deoxyribonuclease activity and circulating DNA concentration in blood plasma of patients with prostate tumors. Ann N Y Acad Sci 1137:218–221

    Article  CAS  PubMed  Google Scholar 

  62. Berger-Achituv S, Brinkmann V, Abed UA, Kuhn LI, Ben-Ezra J, Elhasid R, Zychlinsky A (2013) A proposed role for neutrophil extracellular traps in cancer immunoediting. Front Immunol 4:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Phillipson M, Kubes P (2011) The neutrophil in vascular inflammation. Nat Med 17:1381–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Eruslanov EB, Bhojnagarwala PS, Quatromoni JG, Stephen TL, Ranganathan A, Deshpande C, Akimova T, Vachani A, Litzky L, Hancock WW et al (2014) Tumor-associated neutrophils stimulate t cell responses in early-stage human lung cancer. J Clin Invest 124:5466–5480

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lecot P, Sarabi M, Pereira Abrantes M, Mussard J, Koenderman L, Caux C, Bendriss-Vermare N, Michallet MC (2019) Neutrophil heterogeneity in cancer: From biology to therapies. Front Immunol 10:2155

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chandrasekaran A, Kalashnikov N, Rayes R, Wang C, Spicer J, Moraes C (2017) Thermal scribing to prototype plastic microfluidic devices, applied to study the formation of neutrophil extracellular traps. Lab Chip 17:2003–2012

    Article  CAS  PubMed  Google Scholar 

  67. Etulain J, Martinod K, Wong SL, Cifuni SM, Schattner M, Wagner DD (2015) P-selectin promotes neutrophil extracellular trap formation in mice. Blood 126:242–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Maugeri N, Campana L, Gavina M, Covino C, De Metrio M, Panciroli C, Maiuri L, Maseri A, D'Angelo A, Bianchi ME et al (2014) Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost 12:2074–2088

    Article  CAS  PubMed  Google Scholar 

  69. Elaskalani O, Abdol Razak NB, Metharom P (2018) Neutrophil extracellular traps induce aggregation of washed human platelets independently of extracellular DNA and histones. Cell Commun Signal 16:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Alfaro C, Teijeira A, Onate C, Perez G, Sanmamed MF, Andueza MP, Alignani D, Labiano S, Azpilikueta A, Rodriguez-Paulete A et al (2016) Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (nets). Clin Cancer Res 22:3924–3936

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was kindly backed by the European Cooperation in Science and Technology (COST) Action BM1404 Mye-EUNITER.

Funding

This work was supported by grants from the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) in cooperation with the Israeli Ministry of Science and Technology (MOST) CA2656 (to Zvi G Fridlender), the Naor Sasson fund, and the Israel Lung Association.

Author information

Authors and Affiliations

Authors

Contributions

Study and experimental design: LA, MES and ZGF; sample collection and processing: LA, NKa-I, and SM. Data analysis and interpretation: LA, MS, NK-I, SM, SM. Writing and editing: LA, MES and ZGF.

Corresponding author

Correspondence to Zvi G. Fridlender.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and ethical standards

All procedures involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by the Hadassah Medical Center Institutional Helsinki Review Board, approval number: 0615-16-HMO (Nov 4th 2016). All procedures involving animals were in accordance with the ethical standards of the Animal Care and Research Committee of the Hebrew University School of Medicine; study approval number 14697-5 (August 8th 2017).

Informed consent

Written informed consent was obtained from all participants before blood samples were taken. Patients and heatly volunteers consented to the use of blood sample for research purposes and for publication.

Animal sources

C57BL/6 mice and Balb/C mice, 6–8 week of age, 20–25 g weight, were purchased from Harlan Laboratories (Jerusalem, Israel) and were housed under specific pathogen-free (SPF) conditions at the Hebrew University School of Medicine Animal Resource Center.

Cell line authentication

Murine LLC cell line was purchased from the American Type Culture Collection (ATCC, Manassas, VA). AB12, a murine malignant mesothelioma cell line, derived from an asbestos-induced tumor in a Balb/C mouse, was kindly provided by Prof. Steven Albelda, University of Pennsylvania, PA, USA. The cell lines were expanded and cryopreserved according to ATCC guidelines, and regularly checked for mycobacteria.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is based on a presentation given at the Sixth International Conference on Cancer Immunotherapy and Immunomonitoring (CITIM 2019), held in Tbilisi, Georgia, 29th April–2nd May 2019. It is part of a series of CITIM 2019 papers in Cancer Immunology, Immunotherapy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arpinati, L., Shaul, M.E., Kaisar-Iluz, N. et al. NETosis in cancer: a critical analysis of the impact of cancer on neutrophil extracellular trap (NET) release in lung cancer patients vs. mice. Cancer Immunol Immunother 69, 199–213 (2020). https://doi.org/10.1007/s00262-019-02474-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-019-02474-x

Keywords

Navigation