Skip to main content
Log in

Improvements of Tolerance to Stress Conditions by Genetic Engineering in Saccharomyces Cerevisiae during Ethanol Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Saccharomyces cerevisiae, industrial yeast isolate, has been of great interest in recent years for fuel ethanol production. The ethanol yield and productivity depend on many inhibitory factors during the fermentation process such as temperature, ethanol, compounds released as the result of pretreatment procedures, and osmotic stress. An ideal strain should be able to grow under different stress conditions occurred at different fermentation steps. Development of tolerant yeast strains can be achieved by reprogramming pathways supporting the ethanol metabolism by regulating the energy balance and detoxicification processes. Complex gene interactions should be solved for an in-depth comprehension of the yeast stress tolerance mechanism. Genetic engineering as a powerful biotechnological tool is required to design new strategies for increasing the ethanol fermentation performance. Upregulation of stress tolerance genes by recombinant DNA technology can be a useful approach to overcome inhibitory situations. This review presents the application of several genetic engineering strategies to increase ethanol yield under different stress conditions including inhibitor tolerance, ethanol tolerance, thermotolerance, and osmotolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lau, M. W., Gunawan, C., Balan, V., & Dale, B. E. (2010). Biotechnology Biofuels, 3, 11.

    Article  Google Scholar 

  2. Olsson, L., & Nielsen, J. (2000). Enzyme and Microbial Technology, 26, 785–792.

    Article  CAS  Google Scholar 

  3. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  4. Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O'hare, M., & Kammen, D. M. (2006). Science, 311, 506–508.

    Article  CAS  Google Scholar 

  5. Kuhar, S., Nair, L. M., & Kuhad, R. C. (2008). Canadian Journal of Microbiology, 54, 305–313.

    Article  CAS  Google Scholar 

  6. Olsson, L., & Hahn-Hägerdal, B. (1996). Enzyme and Microbial Technology, 18, 312–331.

    Article  CAS  Google Scholar 

  7. Mielenz, J. R. (2001). Current Opinion in Microbiology, 4, 324–329.

    Article  CAS  Google Scholar 

  8. Kim, S., & Dale, B. E. (2004). Biomass and Bioenergy, 26, 361–375.

    Article  Google Scholar 

  9. Laluce, C., Schenberg, A., Gallardo, J., Coradello, L., & Pombeiro-Sponchiado, S. (2012). Applied Biochemistry and Biotechnology, 166, 1908–1926.

    Article  CAS  Google Scholar 

  10. Ingram, L., Aldrich, H., Borges, A., Causey, T., Martinez, A., Morales, F., Saleh, A., Underwood, S., Yomano, L., & York, S. (1999). Biotechnology Progress, 15, 855–866.

    Article  CAS  Google Scholar 

  11. Walfridsson, M., Bao, X., Anderlund, M., Lilius, G., Bülow, L., & Hahn-Hägerdal, B. (1996). Applied and Environmental Microbiology, 62, 4648–4651.

    CAS  Google Scholar 

  12. Ho, N. W., Chen, Z., & Brainard, A. P. (1998). Applied and Environmental Microbiology, 64, 1852–1859.

    CAS  Google Scholar 

  13. Eliasson, A., Christensson, C., Wahlbom, C. F., & Hahn-Hägerdal, B. (2000). Applied and Environmental Microbiology, 66, 3381–3386.

    Article  CAS  Google Scholar 

  14. Matsushika, A., Inoue, H., Kodaki, T., & Sawayama, S. (2009). Applied Microbiology and Biotechnology, 84, 37–53.

    Article  CAS  Google Scholar 

  15. Fischer, C. R., Klein-Marcuschamer, D., & Stephanopoulos, G. (2008). Metabolic Engineering, 10, 295–304.

    Article  CAS  Google Scholar 

  16. Bai, F., Anderson, W., & Moo-Young, M. (2008). Biotechnology Advances, 26, 89–105.

    Article  CAS  Google Scholar 

  17. Snowdon, C., Schierholtz, R., Poliszczuk, P., Hughes, S., & Van Der Merwe, G. (2009). FEMS Yeast Research, 9, 372–380.

    Article  CAS  Google Scholar 

  18. Zhao, X., & Bai, F. (2009). Journal of Biotechnology, 144, 23–30.

    Article  CAS  Google Scholar 

  19. Alper, H., Moxley, J., Nevoigt, E., Fink, G. R., & Stephanopoulos, G. (2006). Science, 314, 1565–1568.

    Article  CAS  Google Scholar 

  20. Wisselink, H. W., Toirkens, M. J., Wu, Q., Pronk, J. T., & van Maris, A. J. (2009). Applied and Environmental Microbiology, 75, 907–914.

    Article  CAS  Google Scholar 

  21. Cakar, Z. P., Seker, U. O., Tamerler, C., Sonderegger, M., & Sauer, U. (2005). FEMS Yeast Research, 5, 569–578.

    Article  CAS  Google Scholar 

  22. Zhang, Y. X., Perry, K., Vinci, V. A., Powell, K., Stemmer, W. P., & del Cardayré, S. B. (2002). Nature, 415, 644–646.

    Article  CAS  Google Scholar 

  23. Shi, D.-J., Wang, C.-L., & Wang, K.-M. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 139–147.

    Article  CAS  Google Scholar 

  24. Parawira, W., & Tekere, M. (2011). Critical Reviews in Biotechnology, 31, 20–31.

    Article  CAS  Google Scholar 

  25. Almeida, J. R., Modig, T., Petersson, A., Hähn-Hägerdal, B., Lidén, G., & Gorwa-Grauslund, M. F. (2007). Journal of Chemical Technology and Biotechnology, 82, 340–349.

    Article  CAS  Google Scholar 

  26. Liu, Z. L. (2011). Applied Microbiology and Biotechnology, 90, 809–825.

    Article  CAS  Google Scholar 

  27. Antal, M. J., Jr., Leesomboon, T., Mok, W. S., & Richards, G. N. (1991). Carbohydrate Research, 217, 71–85.

    Article  CAS  Google Scholar 

  28. Taherzadeh, M., Gustafsson, L., Niklasson, C., & Lidén, G. (2000). Applied Microbiology and Biotechnology, 53, 701–708.

    Article  CAS  Google Scholar 

  29. Liu, Z. L., Ma, M., & Song, M. (2009). Molecular Genetics and Genomics, 282, 233–244.

    Article  Google Scholar 

  30. Sanchez, B., & Bautista, J. (1988). Enzyme and Microbial Technology, 10, 315–318.

    Article  CAS  Google Scholar 

  31. Khan, Q., & Hadi, S. (1994). Biochemistry and Molecular Biology International, 32, 379.

    CAS  Google Scholar 

  32. Modig, T., Lidén, G., & Taherzadeh, M. (2002). The Biochemical Journal, 363, 769–776.

    Article  CAS  Google Scholar 

  33. Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., & Nilvebrant, N.-O. (1999). Enzyme and Microbial Technology, 24, 151–159.

    Article  CAS  Google Scholar 

  34. Pampulha, M., & Loureiro-Dias, M. (1989). Applied Microbiology and Biotechnology, 31, 547–550.

    Article  CAS  Google Scholar 

  35. Bauer, B. E., Rossington, D., Mollapour, M., Mamnun, Y., Kuchler, K., & Piper, P. W. (2003). European Journal of Biochemistry, 270, 3189–3195.

    Article  CAS  Google Scholar 

  36. Klinke, H. B., Thomsen, A., & Ahring, B. K. (2004). Applied Microbiology and Biotechnology, 66, 10–26.

    Article  CAS  Google Scholar 

  37. Clark, T. A., & Mackie, K. L. (1984). Journal of Chemical Technology and Biotechnology, 34, 101–110.

    Article  Google Scholar 

  38. Sierra‐Alvarez, R., & Lettinga, G. (1991). Journal of Chemical Technology and Biotechnology, 50, 443–455.

    Article  Google Scholar 

  39. Larsson, S., Quintana-Sáinz, A., Reimann, A., Nilvebrant, N.-O., & Jönsson, L. J. (2000). Twenty-First Symposium on Biotechnology for Fuels and Chemicals, Springer, pp. 617–632.

  40. Hasunuma, T., & Kondo, A. (2012). Biotechnology Advances, 30, 1207–1218.

    Article  CAS  Google Scholar 

  41. Petersson, A., Almeida, J. R., Modig, T., Karhumaa, K., Hahn-Hägerdal, B., Gorwa-Grauslund, M. F., & Lidén, G. (2006). Yeast, 23, 455–464.

    Article  CAS  Google Scholar 

  42. Gorsich, S., Dien, B., Nichols, N., Slininger, P., Liu, Z., & Skory, C. (2006). Applied Microbiology and Biotechnology, 71, 339–349.

    Article  CAS  Google Scholar 

  43. Carmel-Harel, O., & Storz, G. (2000). Annual Review of Microbiology, 54, 439–461.

    Article  CAS  Google Scholar 

  44. Larsson, S., Nilvebrant, N.-O., & Jönsson, L. (2001). Applied Microbiology and Biotechnology, 57, 167–174.

    Article  CAS  Google Scholar 

  45. Larsson, S., Cassland, P., & Jönsson, L. J. (2001). Applied and Environmental Microbiology, 67, 1163–1170.

    Article  CAS  Google Scholar 

  46. Coleman, S. T., Tseng, E., & Moye-Rowley, W. S. (1997). Journal of Biological Chemistry, 272, 23224–23230.

    Article  CAS  Google Scholar 

  47. Jungwirth, H., Wendler, F., Platzer, B., Bergler, H., & Högenauer, G. (2000). European Journal of Biochemistry, 267, 4809–4816.

    Article  CAS  Google Scholar 

  48. Herrero, E., Ros, J., Bellí, G., & Cabiscol, E. (2008). Biochimica et Biophysica Acta-General Subjects, 1780, 1217–1235.

    Article  CAS  Google Scholar 

  49. Alriksson, B., Horváth, I. S., & Jönsson, L. J. (2010). Process Biochemistry, 45, 264–271.

    Article  CAS  Google Scholar 

  50. Heer, D., Heine, D., & Sauer, U. (2009). Applied and Environmental Microbiology, 75, 7631–7638.

    Article  CAS  Google Scholar 

  51. Jeppsson, M., Johansson, B., Jensen, P. R., Hahn-Hägerdal, B., & Gorwa-Grauslund, M. F. (2003). Yeast, 20, 1263–1272.

    Article  CAS  Google Scholar 

  52. Sasano, Y., Watanabe, D., Ukibe, K., Inai, T., Ohtsu, I., Shimoi, H., & Takagi, H. (2012). Journal of Bioscience and Bioengineering, 113, 451–455.

    Article  CAS  Google Scholar 

  53. Ansanay-Galeote, V., Blondin, B., Dequin, S., & Sablayrolles, J.-M. (2001). Biotechnology Letters, 23, 677–681.

    Article  CAS  Google Scholar 

  54. Birch, R. M., & Walker, G. M. (2000). Enzyme and Microbial Technology, 26, 678–687.

    Article  CAS  Google Scholar 

  55. Hu, X., Wang, M., Tan, T., Li, J., Yang, H., Leach, L., Zhang, R., & Luo, Z. (2007). Genetics, 175, 1479–1487.

    Article  CAS  Google Scholar 

  56. Ding, J., Huang, X., Zhang, L., Zhao, N., Yang, D., & Zhang, K. (2009). Applied Microbiology and Biotechnology, 85, 253–263.

    Article  CAS  Google Scholar 

  57. Ma, M., & Liu, Z. L. (2010). Applied Microbiology and Biotechnology, 87, 829–845.

    Article  CAS  Google Scholar 

  58. Teixeira, M. C., Raposo, L. R., Mira, N. P., Lourenço, A. B., & Sá-Correia, I. (2009). Applied and Environmental Microbiology, 75, 5761–5772.

    Article  CAS  Google Scholar 

  59. Daum, G., Lees, N. D., Bard, M., & Dickson, R. (1998). Yeast, 14, 1471–1510.

    Article  CAS  Google Scholar 

  60. Swan, T. M., & Watson, K. (1998). FEMS Microbiology Letters, 169, 191–197.

    Article  CAS  Google Scholar 

  61. You, K. M., Rosenfield, C.-L., & Knipple, D. C. (2003). Applied and Environmental Microbiology, 69, 1499–1503.

    Article  CAS  Google Scholar 

  62. Vianna, C. R., Silva, C. L., Neves, M. J., & Rosa, C. A. (2008). Antonie Van Leeuwenhoek, 93, 205–217.

    Article  CAS  Google Scholar 

  63. Leão, C., & Van Uden, N. (1984). Biochimica et Biophysica Acta-Biomembranes, 774, 43–48.

    Article  Google Scholar 

  64. Singer, M. A., & Lindquist, S. (1998). Molecular Cell, 1, 639–648.

    Article  CAS  Google Scholar 

  65. Sharma, S. C. (1997). FEMS Microbiology Letters, 152, 11–15.

    Article  CAS  Google Scholar 

  66. Attfield, P. V. (1987). FEBS Letters, 225, 259–263.

    Article  CAS  Google Scholar 

  67. Wiemken, A. (1990). Antonie Van Leeuwenhoek, 58, 209–217.

    Article  CAS  Google Scholar 

  68. Stanley, D., Bandara, A., Fraser, S., Chambers, P., & Stanley, G. A. (2010). Journal of Applied Microbiology, 109, 13–24.

    CAS  Google Scholar 

  69. Bolat, I. (2008). Innovative Romanian Food Biotechnology, 2, 1–10.

    CAS  Google Scholar 

  70. Nwaka, S., Mechler, B., & Holzer, H. (1996). FEBS Letters, 386, 235–238.

    Article  CAS  Google Scholar 

  71. Jung, Y.-J., & Park, H.-D. (2005). Biotechnology Letters, 27, 1855–1859.

    Article  CAS  Google Scholar 

  72. Hirasawa, T., Nakakura, Y., Yoshikawa, K., Ashitani, K., Nagahisa, K., Furusawa, C., Katakura, Y., Shimizu, H., & Shioya, S. (2006). Applied Microbiology and Biotechnology, 70, 346–357.

    Article  CAS  Google Scholar 

  73. Alexandre, H., Ansanay-Galeote, V., Dequin, S., & Blondin, B. (2001). FEBS Letters, 498, 98–103.

    Article  CAS  Google Scholar 

  74. Luhe, A. L., Tan, L., Wu, J., & Zhao, H. (2011). Biotechnology Letters, 33, 1007–1011.

    Article  CAS  Google Scholar 

  75. Du, X., & Takagi, H. (2007). Applied Microbiology and Biotechnology, 75, 1343–1351.

    Article  CAS  Google Scholar 

  76. Suutari, M., Liukkonen, K., & Laakso, S. (1990). Journal of General Microbiology, 136, 1469–1474.

    Article  CAS  Google Scholar 

  77. Edgardo, A., Carolina, P., Manuel, R., Juanita, F., & Baeza, J. (2008). Enzyme and Microbial Technology, 43, 120–123.

    Article  CAS  Google Scholar 

  78. Rajoka, M., Ferhan, M., & Khalid, A. (2005). Letters in Applied Microbiology, 40, 316–321.

    Article  CAS  Google Scholar 

  79. Hasunuma, T., & Kondo, A. (2012). Process Biochemistry, 47, 1287–1294.

    Article  CAS  Google Scholar 

  80. Xiao, Z., Zhang, X., Gregg, D. J., & Saddler, J. N. (2004). Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals, Springer, pp. 1115–1126.

  81. Jørgensen, H., Kristensen, J. B., & Felby, C. (2007). Biofuels, Bioproducts and Biorefining, 1, 119–134.

    Article  Google Scholar 

  82. Alfani, F., Gallifuoco, A., Saporosi, A., Spera, A., & Cantarella, M. (2000). Journal of Industrial Microbiology and Biotechnology, 25, 184–192.

    Article  CAS  Google Scholar 

  83. Wingren, A., Galbe, M., & Zacchi, G. (2003). Biotechnology Progress, 19, 1109–1117.

    Article  CAS  Google Scholar 

  84. Banat, I., Nigam, P., Singh, D., Marchant, R., & McHale, A. (1998). World Journal of Microbiology and Biotechnology, 14, 809–821.

    Article  CAS  Google Scholar 

  85. Krsmanović, T., & Kölling, R. (2004). FEBS Letters, 577, 215–219.

    Article  Google Scholar 

  86. Shahsavarani, H., Sugiyama, M., Kaneko, Y., Chuenchit, B., & Harashima, S. (2011). Biotechnology Advances, 30, 1289–1300.

    Article  Google Scholar 

  87. Lee, J.-O., Jeong, M.-J., Kwon, T.-R., Lee, S.-K., Byun, M.-O., Chung, I.-M., & Park, S. C. (2006). Journal of Biosciences, 31, 223–233.

    Article  CAS  Google Scholar 

  88. Kim, H.-S., Kim, N.-R., Yang, J., & Choi, W. (2011). Applied Microbiology and Biotechnology, 91, 1159–1172.

    Article  CAS  Google Scholar 

  89. An, M.-Z., Tang, Y.-Q., Mitsumasu, K., Liu, Z.-S., Shigeru, M., & Kenji, K. (2011). Biotechnology Letters, 33, 1367–1374.

    Article  CAS  Google Scholar 

  90. Estruch, F. (2000). FEMS Microbiology Review, 24, 469–486.

    Article  CAS  Google Scholar 

  91. Mahmud, S. A., Hirasawa, T., & Shimizu, H. (2010). Journal of Bioscience and Bioengineering, 109, 262–266.

    Article  CAS  Google Scholar 

  92. Cansado, J., Vicente-Soler, J., Soto, T., Fernandez, J., & Gacto, M. (1998). Biochimica et Biophysica Acta-General Subjects, 1381, 271–278.

    Article  CAS  Google Scholar 

  93. Balakumar, S., & Arasaratnam, V. (2012). Brazilian Journal of Microbiology, 43, 157–166.

    Article  CAS  Google Scholar 

  94. Cronwright, G. R., Rohwer, J. M., & Prior, B. A. (2002). Applied and Environmental Microbiology, 68, 4448–4456.

    Article  CAS  Google Scholar 

  95. Ando, A., Tanaka, F., Murata, Y., Takagi, H., & Shima, J. (2006). FEMS Yeast Research, 6, 249–267.

    Article  CAS  Google Scholar 

  96. Hohmann, S. (2002). Microbiology and Molecular Biology Reviews, 66, 300–372.

    Article  CAS  Google Scholar 

  97. Westfall, P. J., Ballon, D. R., & Thorner, J. (2004). Science, 306, 1511–1512.

    Article  CAS  Google Scholar 

  98. Medina, V. G., Almering, M. J., van Maris, A. J., & Pronk, J. T. (2010). Applied and Environmental Microbiology, 76, 190–195.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Yeditepe University.

Conflict of Interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fikrettin Şahin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doğan, A., Demirci, S., Aytekin, A.Ö. et al. Improvements of Tolerance to Stress Conditions by Genetic Engineering in Saccharomyces Cerevisiae during Ethanol Production. Appl Biochem Biotechnol 174, 28–42 (2014). https://doi.org/10.1007/s12010-014-1006-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1006-z

Keywords

Navigation