Skip to main content
Log in

Advances and Developments in Strategies to Improve Strains of Saccharomyces cerevisiae and Processes to Obtain the Lignocellulosic Ethanol−A Review

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The conversion of biomass into ethanol using fast, cheap, and efficient methodologies to disintegrate and hydrolyse the lignocellulosic biomass is the major challenge of the production of the second-generation ethanol. This revision describes the most relevant advances on the conversion process of lignocellulose materials into ethanol, development of new xylose-fermenting strains of Saccharomyces cerevisiae using classical and modern genetic tools and strategies, elucidation of the expression of some complex industrial phenotypes, tolerance mechanisms of S. cerevisiae to lignocellulosic inhibitors, monitoring and strategies to improve fermentation processes. In the last decade, numerous engineered pentose-fermenting yeasts have been developed using molecular biology tools. The increase in the tolerance of S. cerevisiae to inhibitors is still an important issue to be exploited. As the industrial systems of ethanol production operate under non-sterile conditions, microbial subpopulations are generated, depending on the operational conditions and the levels of contaminants. Among the most critical requirements for production of the second-generation ethanol is the reduction in the levels of toxic by-products of the lignocellulosic hydrolysates and the production of low-cost and efficient cellulosic enzymes. A number of procedures have been established for the conversion of lignocellulosic materials into ethanol, but none of them are completely satisfactory when process time, costs, and efficiency are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  2. Mussatto, S. I., Dragone, G., Guimarães, P. M. R., Silva, J. P. A., Carneiro, L. M., Roberto, I. C., et al. (2010). Biotechnology Advances, 28, 817–830.

    Article  CAS  Google Scholar 

  3. Hendriks, A. T. W. M., & Zeeman, G. (2009). Bioresource Technology, 100, 10–18.

    Article  CAS  Google Scholar 

  4. Margeot, A., Hahn-Hagerdal, B., Edlund, M., Slade, R., & Monot, F. (2009). Current Opinion in Biotechnology, 20, 372–380.

    Article  CAS  Google Scholar 

  5. Gírio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., & Bogel-Lukasik, R. (2010). Bioresource Technology, 101, 4775–4800.

    Article  CAS  Google Scholar 

  6. Zhao, X., Cheng, K., & Liu, D. (2009). Applied Microbiology and Biotechnology, 82, 815–827.

    Article  CAS  Google Scholar 

  7. Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Industrial and Engineering Chemistry Research, 48, 3713–3729.

    Article  CAS  Google Scholar 

  8. Yang, B., & Wyman, C. E. (2008). Biofuels, Bioproducts and Biorefining, 2, 26–40.

    Article  CAS  Google Scholar 

  9. Hamelinck, C. N., van Hooijdonk, G., & Faaij, A. P. C. (2005). Biomass and Bioenergy, 28, 384–410.

    Article  CAS  Google Scholar 

  10. Carvalheiro, F., Duarte, L. C., & Gírio, F. M. (2008). Journal of Scientific and Industrial Research, 67, 849–864.

    CAS  Google Scholar 

  11. Iranmahboob, J., Nadim, F., & Monemi, S. (2002). Biomass and Bioenergy, 22, 401–404.

    Article  CAS  Google Scholar 

  12. Rossell, C. E. V., Lahr Filho, D., Hilst, A. G. P., & Leal, M. R. L. V. (2005). International Sugar Journal, 107, 192–195.

    CAS  Google Scholar 

  13. Taherzadeh, M., & Karimi, K. (2007). BioResources, 2, 472–499.

    CAS  Google Scholar 

  14. Gregg, D. J., & Saddler, J. N. (1996). Biotechnology and Bioengineering, 51, 375–383.

    Article  CAS  Google Scholar 

  15. Gautam, S. P., Bundela, P. S., Pandey, A. K., Khan, J., Awasthi, M. K., & Sarsaiya, S. (2011). Biotechnology Research International. doi:10.4061/2011/810425.

  16. Stambuk, B. U., Eleutherio, E. C. A., Florez-Pardo, L. M., Souto-Maior, A. M., & Bom, E. P. S. (2008). Journal of Scientific and Industrial Research, 67, 918–926.

    CAS  Google Scholar 

  17. Slininger, P. J., Bolen, P. L., & Kurztman, C. P. (1987). Enzyme and Microbial Technology, 9, 5–15.

    Article  CAS  Google Scholar 

  18. Olsson, L., & Hahn-Hägerdal, B. (1996). Enzyme and Microbial Technology, 18, 312–331.

    Article  CAS  Google Scholar 

  19. Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  Google Scholar 

  20. Bothast, R. J., Nichols, N. N., & Dien, B. S. (1999). Biotechnology Progress, 15, 867–875.

    Article  CAS  Google Scholar 

  21. Dien, B. S., Cotta, M. A., & Jeffries, T. W. (2003). Applied Microbiology and Biotechnology, 63, 258–266.

    Article  CAS  Google Scholar 

  22. Lau, M. W., Gunawan, C., Balan, V., & Dale, B. E. (2010). Biotechnology for Biofuels, 3, 11–15.

    Article  CAS  Google Scholar 

  23. Xu, Q., Singh, A., & Himmel, M. E. (2009). Current Opinion in Biotechnology, 20, 364–371.

    Article  CAS  Google Scholar 

  24. Panagiotou, G., Villas-Bôas, S. G., Christakopoulos, P., Nielsen, J., & Olsson, L. (2005). Journal of Biotechnology, 115, 425–434.

    Article  CAS  Google Scholar 

  25. Olsson, L., & Hahn-Hägerdal, B. (1993). Process Biochemistry, 28, 249–257.

    Article  CAS  Google Scholar 

  26. Jones, D. T., Shirley, M., Wu, X., & Keis, S. (2000). Journal of Molecular Microbiology and Biotechnology, 2, 21–26.

    CAS  Google Scholar 

  27. Los, M., Golec, P., Los, J. M., Weglewska-Jurkiewicz, A., Czyz, A., Wegrzyn, A., et al. (2007). BMC Biotechnology, 7, 13–18.

    Article  CAS  Google Scholar 

  28. Lee, W.-J., Kim, M.-D., Ryu, Y.-W., Bisson, L. F., & Seo, J.-H. (2002). Applied Microbiology and Biotechnology, 60, 186–191.

    Article  CAS  Google Scholar 

  29. Sedlak, M., & Ho, N. W. Y. (2004). Yeast, 21, 671–684.

    Article  CAS  Google Scholar 

  30. Runquist, D., Hahn-Hägerdal, B., & Radstrom, P. (2010). Biotechnology for Biofuels, 3, 5–11.

    Article  CAS  Google Scholar 

  31. Leandro, M. J., Fonseca, C., & Gonçalves, P. (2009). FEMS Yeast Research, 9, 511–525.

    Article  CAS  Google Scholar 

  32. Matsushika, A., Inoue, H., Kodaki, T., & Sawayama, S. (2009). Applied Microbiology and Biotechnology, 84, 37–53.

    Article  CAS  Google Scholar 

  33. Chandel, A. K., Chandrasekhar, G., Radhika, K., Ravinder, R., & Ravindra, P. (2011). Biotechnology and Molecular Biology Review, 6, 8–20.

    CAS  Google Scholar 

  34. Toivari, M. H., Aristidou, A., Rouhonen, L., & Penttilä, M. (2001). Metabolic Engineering, 3, 236–249.

    Article  CAS  Google Scholar 

  35. Toivari, M. H., Salusjârvi, L., Rouhonen, L., & Penttilä, M. (2004). Applied and Environmental Microbiology, 70, 3681–3686.

    Article  CAS  Google Scholar 

  36. Verho, R., Londesborough, J., Penttilã, M., & Richard, P. (2003). Environmental Microbiology, 69, 5892–5897.

    Article  CAS  Google Scholar 

  37. Wisselink, H. W., Toirkens, M. J., Wu, Q., Pronk, J. T., & van Maris, A. J. A. (2009). Applied and Environmental Microbiology, 75, 907–914.

    Article  CAS  Google Scholar 

  38. Bettiga, M., Bengtsson, O., Hahn-Hägerdal, B., & Gorwa-Grauslund, M. F. (2009). Microbial Cell Factories, 8, 40–51.

    Article  CAS  Google Scholar 

  39. Mortimer, R. K. (2000). Genome Research, 10, 403–409.

    Article  CAS  Google Scholar 

  40. Amorim, H. V., Lopes, M. L., Oliveira, J. V. C., Buckeridge, M. S., & Godman, G. H. (2011). Applied Microbiology and Biotechnology, 91, 1267–1275.

    Article  CAS  Google Scholar 

  41. Souza, C. S., Thomaz, D., Cides, E. R., Oliveira, K. F., Tognoli, J. O., & Laluce, C. (2007). World Journal of Microbiology and Biotechnology, 23, 1667–1677.

    Article  CAS  Google Scholar 

  42. Basso, L. C., Amorim, H. V., Oliveira, A. J., & Lopes, M. L. (2008). FEMS Yeast Research, 8, 1155–1163.

    Article  CAS  Google Scholar 

  43. Nevoigt, E. (2008). Microbiology and Molecular Biology Reviews, 72, 379–412.

    Article  CAS  Google Scholar 

  44. Patnaik, R. (2008). Biotechnology Progress, 24, 38–47.

    Article  CAS  Google Scholar 

  45. Karagüler, N. G., Sessions, R. B., Binay, B., Ordu, E. B., & Clarke, A. R. (2007). Biochemical Society Transactions, 35, 1610–1615.

    Article  Google Scholar 

  46. Schuster, S., Dandekar, T., & Fell, D. A. (1999). Trends in Biotechnology, 17, 53–60.

    Article  CAS  Google Scholar 

  47. Bailey, J. E., Sburlati, A., Hatzimanikatis, V., Lee, K., Renner, W. A., & Tsai, P. S. (2002). Biotechnology and Bioengineering, 79, 568–579.

    Article  CAS  Google Scholar 

  48. Lee, S. K., Chou, H., Ham, T. S., Lee, T. S., & Keasling, J. D. (2008). Current Opinion in Biotechnology, 19, 556–563.

    Article  CAS  Google Scholar 

  49. Jeffries, T. W. (2006). Current Opinion in Biotechnology, 17, 320–326.

    Article  CAS  Google Scholar 

  50. Gong, J., Zheng, H., Wu, Z., Chen, T., & Zhao, X. (2009). Biotechnology Advances, 27, 996–1005.

    Article  Google Scholar 

  51. Alper, H., & Stephanopoulos, G. (2007). Metabolic Engineering, 9, 258–267.

    Article  CAS  Google Scholar 

  52. Sauer, U. (2001). Advances in Biochemical Engineering. Biotechnology, 73, 130–166.

    Google Scholar 

  53. Araya, C. L., Payen, C., Dunhum, M. J., & Fields, S. (2010). BMC Genomics, 11, 88–98.

    Article  CAS  Google Scholar 

  54. Shi, D., Wang, C., & Wang, K. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 139–147.

    Article  CAS  Google Scholar 

  55. Hou, L. (2009). Biotechnology Letters, 31, 671–677.

    Article  CAS  Google Scholar 

  56. Zeyl, C. (2004). Research in Microbiology, 155, 217–223.

    Article  CAS  Google Scholar 

  57. Wisselink, H. W., Toirkens, M. J., del Rosario Franco Berriel, M., Winkler, A. A., van Dijken, J. P., Pronk, J. T., et al. (2007). Applied and Environmental Microbiology, 73, 4881–4891.

    Article  CAS  Google Scholar 

  58. Bettiga, M., Hahn-Hägerdal, B., & Gorwa-Grauslund, M. F. (2008). Biotechnology for Biofuels, 1, 16–23.

    Article  CAS  Google Scholar 

  59. Sonderegger, M., & Sauer, U. (2003). Applied and Environmental Microbiology, 69, 1990–1998.

    Article  CAS  Google Scholar 

  60. Liu, H., Yan, M., Lai, C., Xu, L., & Ouyang, P. (2010). Applied Biochemistry and Biotechnology, 160, 574–582.

    Article  CAS  Google Scholar 

  61. Young, E., Lee, S. M., & Alper, H. (2010). Biotechnology for Biofuels, 3, 24–35.

    Article  CAS  Google Scholar 

  62. Krahulec, S., Petschacher, B., Wallner, M., Longus, K., Klimacek, M., & Nidetzky, B. (2010). Microbial Cell Factories, 9, 16–29.

    Article  CAS  Google Scholar 

  63. Verduyn, C., van Kleef, R., Frank, J., Schreuder, H., van Dijken, J., & Scheffers, A. (1985). Biochemical Journal, 226, 669–677.

    CAS  Google Scholar 

  64. Jeffries, T. W. (1985). Trends in Biotechnology, 3, 208–212.

    Article  CAS  Google Scholar 

  65. Watanabe, S., Saleh, A. A., Pack, S. P., Annaluru, N., Kodaki, T., & Makino, K. (2007). Microbiology, 153, 3044–3054.

    Article  CAS  Google Scholar 

  66. Almeida, J. R. M., Modig, T., Petersson, A., Hahn-Hägerdal, B., Lidén, G., & Gorwa-Grauslund, M. F. (2007). Journal of Chemical Technology and Biotechnology, 82, 340–349.

    Article  CAS  Google Scholar 

  67. Parawira, W., & Tekere, M. (2011). Critical Reviews in Biotechnology, 31, 20–31.

    Article  CAS  Google Scholar 

  68. Mashego, M. R., Jansen, M. L. A., Vinke, J. L., van Gulik, W. M., & Heijnen, J. J. (2005). FEMS Yeast Research, 5, 419–430.

    Article  CAS  Google Scholar 

  69. Heer, D., & Sauer, U. (2008). Microbial Biotechnology, 1, 497–506.

    Article  CAS  Google Scholar 

  70. Liu, Z. L., Slininger, P. J., & Gorsich, S. W. (2005). Applied Biochemistry and Biotechnology, 121–124, 451–460.

    Article  Google Scholar 

  71. Almeida, J. R. M., Bertilsson, M., Gorwa-Grauslund, M. F., Gorsich, S., & Lidén, G. (2009). Applied Microbiology and Biotechnology, 82, 625–638.

    Article  CAS  Google Scholar 

  72. Giannattasio, S., Guaragnella, N., Corte-Real, M., Passarela, S., & Marra, E. (2005). Gene, 354, 93–98.

    Article  CAS  Google Scholar 

  73. Vanderbergh, P. A. (1993). FEMS Microbiology Reviews, 12, 221–237.

    Article  Google Scholar 

  74. Heyland, J., Fu, J., & Blank, L. M. (2009). Microbiology, 155, 3827–3837.

    Article  CAS  Google Scholar 

  75. Bellissimi, E., van Dijken, J. P., Pronk, J. T., & van Maris, A. J. A. (2009). FEMS Yeast Research, 9, 358–364.

    Article  CAS  Google Scholar 

  76. Casey, E., Sedlak, M., Ho, N. W. Y., & Mosier, N. S. (2010). FEMS Yeast Research, 10, 385–393.

    Article  CAS  Google Scholar 

  77. Mira, N. P., Palma, M., Guerreiro, J. F., & Sá-Correia, I. (2010). Microbial Cell Factories, 9, 79–91.

    Article  CAS  Google Scholar 

  78. Araya-Secchi, R., Garate, J. A., Holmes, D. S., & Perez-Acle, T. (2011). BMC Genomics, 12(Suppl 4), S8.

    Article  Google Scholar 

  79. Zhang, J. G., Liu, X. Y., He, X. P., Guo, X. N., Lu, Y., & Zhang, B. (2011). Biotechnology Letters, 33, 277–284.

    Article  CAS  Google Scholar 

  80. Mira, N. P., Becker, J. D., & Sá-Correia, I. (2010). OMICS, 14, 587–601.

    Article  CAS  Google Scholar 

  81. Mira, N. P., Teixeira, M. C., & Sá-Correia, I. (2010). OMICS, 14, 525–540.

    Article  CAS  Google Scholar 

  82. Wright, J., Bellisimi, E., Hulster, E., Wagner, A., Pronk, J., & van de Maris, A. J. A. (2011). FEMS Yeast Research, 11, 299–306.

    Article  CAS  Google Scholar 

  83. Du, L., Su, Y., Sun, D., Zhu, W., Wang, J., Zhuang, X., et al. (2008). FEMS Yeast Research, 8, 531–539.

    Article  CAS  Google Scholar 

  84. Tsiatsiani, L., van Breusegem, F., Gallois, P., Zavialov, A., Lam, E., & Bozhkov, P. V. (2011). Cell Death and Differentiation, 18, 1279–1288.

    Article  CAS  Google Scholar 

  85. Madeo, F., Herker, E., Maldener, C., Wissing, S., Lächelt, S., Herlan, M., et al. (2002). Molecular Cell, 9, 911–917.

    Article  CAS  Google Scholar 

  86. Overkamp, K. M., Kötter, P., van der Hoek, R., Schoondermark-Stolk, S., Luttik, M. A. H., et al. (2002). Yeast, 19, 509–520.

    Article  CAS  Google Scholar 

  87. Geertman, J. M. A., van Dijken, J. P., & Pronk, J. T. (2006). FEMS Yeast Research, 6, 1193–1203.

    Article  CAS  Google Scholar 

  88. Salmon, T. B., Evert, B. A., Song, B., & Doetsch, P. W. (2004). Nucleic Acids Research, 32, 3712–3723.

    Article  CAS  Google Scholar 

  89. Perrone, G. G., Tan, S. X., & Dawes, I. W. (2008). Biochimica et Biophysica Acta, 1783, 1354–1368.

    Article  CAS  Google Scholar 

  90. Carmona-Gutierrez, D., Eisenberg, T., Büttner, S., Meisinger, C., Kroemer, G., & Madeo, F. (2010). Cell Death and Differentiation, 17, 763–773.

    Article  CAS  Google Scholar 

  91. Park, S., Koo, H. M., Park, Y. K., Park, S. M., Park, J. C., Lee, O., et al. (2011). Bioresource Technology, 102, 6033–6038.

    Article  CAS  Google Scholar 

  92. Heer, D., Heine, D., & Sauer, U. (2009). Applied and Environmental Microbiology, 75, 7631–7638.

    Article  CAS  Google Scholar 

  93. Lin, F. M., Qiao, B., & Yuan, Y. J. (2009). Applied and Environmental Microbiology, 75, 3765–3776.

    Article  CAS  Google Scholar 

  94. Larsson, S., Quintana-Sáinz, A., Reimann, A., Nilvebrant, N. O., & Jönsson, L. J. (2000). Applied Biochemistry and Biotechnology, 84–86, 617–632.

    Article  Google Scholar 

  95. Alriksson, B., Horváth, I. S., & Jönsson, L. J. (2010). Process Biochemistry, 45, 264–271.

    Article  CAS  Google Scholar 

  96. Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Applied Microbiology and Biotechnology, 66, 10–26.

    Article  CAS  Google Scholar 

  97. Endo, A., Nakamura, T., & Shima, J. (2009). FEMS Microbiology Letters, 299, 95–99.

    Article  CAS  Google Scholar 

  98. Endo, A., Nakamura, T., Ando, A., Tokuyasu, K., & Shima, J. (2008). Biotechnology for Biofuels, 1, 3–9.

    Article  CAS  Google Scholar 

  99. Ji, L., Shen, Y., Xu, L., Peng, B., Xiao, Y., & Bao, X. (2011). Bioresource Technology, 102, 8105–8109.

    Article  CAS  Google Scholar 

  100. Larsson, S., Cassland, P., & Jönsson, L. J. (2011). Applied and Environmental Microbiology, 67, 1163–1170.

    Article  Google Scholar 

  101. Ding, J., Huang, X., Zhang, L., Zhao, N., Yang, D., et al. (2009). Applied Microbiology and Biotechnology, 85, 253–263.

    Article  CAS  Google Scholar 

  102. Auesukaree, C., Damnernsawad, A., Kruatrachue, M., Pokethitiyook, P., Boonchird, C., Kaneko, Y., et al. (2009). Journal of Applied Genetics, 50, 301–310.

    Article  CAS  Google Scholar 

  103. Snowdon, C., Schierholtz, R., Poliszczuk, P., Hughes, S., & van der Merwe, G. (2009). FEMS Yeast Research, 9, 372–380.

    Article  CAS  Google Scholar 

  104. Favale, S., Pietromarch, P., & Ciolfi, G. (2007). Vitis, 46, 39–43.

    CAS  Google Scholar 

  105. Aguilera, A., Chávez, S., & Malagón, F. (2000). Yeast, 16, 731–754.

    Article  CAS  Google Scholar 

  106. Gabriel, A., Dapprich, J., Kunkel, M., Gresham, D., Pratt, S. C., & Dunham, M. J. (2006). PLoS Genetics, 2, 2026–2038.

    Article  CAS  Google Scholar 

  107. Ames, R. M., Rash, B. M., Hentges, K. E., Robertson, D. L., Delneri, D., & Lovell, S. C. (2010). Genome Biology and Evolution, 2, 591–601.

    Article  CAS  Google Scholar 

  108. Fawcett, J. A., & Innan, H. (2011). Genes, 2, 191–209.

    Article  CAS  Google Scholar 

  109. Sniegowski, P. D., & Gerrish, P. J. (2010). Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365, 1255–1263.

    Article  Google Scholar 

  110. Pallone, H., & Viikari, L. (2004). Biotechnology and Bioengineering, 86, 550–557.

    Article  CAS  Google Scholar 

  111. Eijsink, V. G. H., Vaaje-Kolstad, G., Varum, K. M., & Horn, S. J. (2008). Trends in Biotechnology, 26, 228–235.

    Article  CAS  Google Scholar 

  112. Kobayashi, H., Komanoya, T., Guha, S. K., Hara, K., & Fukuoka, A. (2011). Applied Catalysis A: General, 409–410, 13–20.

    Article  CAS  Google Scholar 

  113. Fargues, C., Lewandowaki, R., & Lameloise, M. L. (2010). Industrial and Engineering Chemistry Research, 49, 9248–9257.

    Article  CAS  Google Scholar 

  114. Sainio, T., Turku, I., & Heinonen, J. (2011). Bioresource Technology, 12, 6048–6057.

    Article  CAS  Google Scholar 

  115. Dehkoda, A. (2008). Master Thesis, University College of Boras, Örnsköldsvik, Sweeden.

  116. Jhadav, A., Vamsi, K. K., Khaimar, Y., Boraste, A., Gupta, N., et al. (2009). International Journal of Microbiology Research, 1, 9–12.

    Google Scholar 

  117. Tomás-Pejó, E., Oliva, J. M., Ballesteros, M., & Olsson, L. (2008). Biotechnology and Bioengineering, 100, 1122–1131.

    Article  CAS  Google Scholar 

  118. Brethauer, S., & Wyman, C. E. (2010). Bioresource Technology, 101, 4862–4874.

    Article  CAS  Google Scholar 

  119. Kim, S. R., Lee, K. S., Choi, J. H., Ha, S. J., Kweon, D. H., Seo, J. H., et al. (2010). Journal of Biotechnology, 150, 404–407.

    Article  CAS  Google Scholar 

  120. Insa, G., Sablayrolles, J. M., & Douzal, V. (1995). Bioprocess and Biosystems Engineering, 13, 171–176.

    CAS  Google Scholar 

  121. Stanley, G. A., Douglas, N. G., Every, E. J., Tzanatos, T., & Pamment, N. B. (1993). Biotechnology Letters, 15, 1199–1204.

    Article  CAS  Google Scholar 

  122. Zheng, D. Q., Wu, X. C., Tao, X. L., Wang, P. M., & Li, P. (2011). Bioresource Technology, 3, 3020–3027.

    Article  CAS  Google Scholar 

  123. Pérez, F., Regodón, J. A., Valdés, M. E., de Miguel, C., & Ramírez, M. (2000). Food Microbiology, 17, 119–128.

    Article  CAS  Google Scholar 

  124. Li, J., Zhao, J. B., Zhao, M., Yang, Y. L., Jiang, W. H., & Yang, S. (2010). Applied Microbiology, 50, 373–379.

    Article  CAS  Google Scholar 

  125. Steen, E. J., Chan, R., Prasad, N., Myers, S., Petzold, C. J., Redding, A., et al. (2008). Microbial Cell Factories, 7, 36–43.

    Article  CAS  Google Scholar 

  126. Wilkins, M. R., & Atiyeh, H. K. (2011). Current Opinion in Biotechnology, 22, 1–5.

    Article  CAS  Google Scholar 

  127. Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. J., et al. (2010). Current Opinion in Biotechnology, 21, 277–286.

    Article  CAS  Google Scholar 

  128. Brennan, L., & Owende, P. (2010). Renewable & Sustainable Energy Reviews, 14, 555–577.

    Article  CAS  Google Scholar 

  129. Yan, Y., & Liao, J. C. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 471–479.

    Article  CAS  Google Scholar 

  130. Amyris: The latest on the U. C. Berkeley-spawned Agrofuel Firm 2011. Available from: www.berkeleydailyplanet.com. Accessed December 02, 2011.

Download references

Acknowledgements

The authors wish to express their gratitude to FAPESP for all the financial support given to their research on bioethanol production for so many years and particularly to the Bioenergy/FAPESP program, which has encouraged them to work on the production of bioethanol from sugarcane bagasse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Laluce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laluce, C., Schenberg, A.C.G., Gallardo, J.C.M. et al. Advances and Developments in Strategies to Improve Strains of Saccharomyces cerevisiae and Processes to Obtain the Lignocellulosic Ethanol−A Review. Appl Biochem Biotechnol 166, 1908–1926 (2012). https://doi.org/10.1007/s12010-012-9619-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9619-6

Keywords

Navigation