Skip to main content
Log in

Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Saccharomyces cerevisiae strains tolerant to ethanol and heat stresses are important for industrial ethanol production. In this study, five strains (Tn 1–5) tolerant to up to 15% ethanol were isolated by screening a transposon-mediated mutant library. Two of them displayed tolerance to heat (42 °C). The determination of transposon insertion sites and Northern blot analysis identified seven putative genes (CMP2, IMD4, SSK2, PPG1, DLD3, PAM1, and MSN2) and revealed simultaneous down-regulations of CMP2 and IMD4, and SSK2 and PPG1, down-regulation of DLD3, and disruptions of the open reading frame of PAM1 and MSN2, indicating that ethanol and/or heat tolerance can be conferred. Knockout mutants of these seven individual genes were ethanol tolerant and three of them (SSK2, PPG1, and PAM1) were tolerant to heat. Such tolerant phenotypes reverted to sensitive phenotypes by the autologous or overexpression of each gene. Five transposon mutants showed higher ethanol production and grew faster than the control strain when cultured in rich media containing 30% glucose and initial 6% ethanol at 30 °C. Of those, two thermotolerant transposon mutants (Tn 2 and Tn 3) exhibited significantly enhanced growth and ethanol production compared to the control at 42 °C. The genes identified in this study may provide a basis for the application in developing industrial yeast strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdel-Banat BM, Hoshida H, Ano A, Nonklang S, Akada R (2010) High-temperature fermentation: how can process for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl Microbiol Biotechnol 85:861–867

    Article  CAS  PubMed  Google Scholar 

  • Adams A, Gottschling DE, Kaiser CA, Stearns T (1997) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Albertyn J, Hohmann S, Thevelein JM, Prior BA (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14:4135–4144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    Article  CAS  PubMed  Google Scholar 

  • Araki Y, Wu H, Kitagaki H, Akao T, Takagi H, Shimoi H (2009) Ethanol stress stimulates the Ca2+-mediated calcineurin/Crz1 pathway in Saccharomyces cerevisiae. J Biosci Bioeng 107:1–6

    Article  CAS  PubMed  Google Scholar 

  • Araque E, Parra C, Rodríguez M, Freer J, Baeza J (2008) Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production. Enzyme Microb Technol 43:120–123

    Article  CAS  Google Scholar 

  • Auesukaree C, Damnernsawad A, Kruatrachue M, Pokethitiyook P, Boonchird C, Kaneko Y, Harashima S (2009) Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. J Appl Genet 50:301–310

    Article  CAS  PubMed  Google Scholar 

  • Baerends RJ, Qiu JL, Rasmussen S, Nielsen HB, Brandt A (2009) Impaired uptake and/or utilization of leucine by Saccharomyces cerevisiae is suppressed by the SPT15-300 allele of the TATA-binding protein gene. Appl Environ Microbiol 75:6055–6061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC (1993) An osmosensing signal transduction pathway in yeast. Science 259:1760–1763

    Article  CAS  PubMed  Google Scholar 

  • Bro C, Regenberg B, Förster J, Nielsen J (2006) In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng 8:102–111

    Article  CAS  PubMed  Google Scholar 

  • Burns N, Grimwade B, Ross-Macdonald PB, Choi EY, Finberg K, Roeder GS, Snyder M (1994) Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev 8:1087–1105

    Article  CAS  PubMed  Google Scholar 

  • Casey GP, Ingledew WE (1986) Ethanol tolerance in yeast. Crit Rev Microbiol 13:219–280

    Article  CAS  PubMed  Google Scholar 

  • Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chelstowska A, Liu Z, Jia Y, Amberg D, Butow R (1999) Signaling between mitochondria and the nucleus regulates the expression of a new D-lactate dehydrogenase activity in yeast. Yeast 15:1377–1391

    Article  CAS  PubMed  Google Scholar 

  • Cheung AL, Fischetti VA (1988) Variation in the expression of cell wall proteins of Staphylococcus aureus growth on solid and liquid media. Infect Immun 56:1061–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coote PJ, Jones MV, Seymour IJ, Rowe DL, Ferdinando DP, McArthur AJ, Cole MB (1994) Activity of the plasma membrane H+-ATPase is a key physiological determinant of thermotolerance in Saccharomyces cerevisiae. Microbiology 140:1881–1890

    Article  CAS  PubMed  Google Scholar 

  • Cyert MS (2003) Calcineurin signaling in Saccharomyces cerevisiae: how yeast go crazy in response to stress. Biochem Biophys Res Commun 311:1143–1150

    Article  CAS  PubMed  Google Scholar 

  • Estruch F, Carlson M (1993) Two homologous zinc finger genes identified by multicopy suppression in a SNF1 protein kinase mutant of Saccharomyces cerevisiae. Mol Cell Biol 13:3872–3881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita K, Matsuyama A, Kobayashi A, Iwahashi H (2006) The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res 6:744–750

    Article  CAS  PubMed  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Elisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S (2007) Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J Biotechnol 131:34–44

    Article  CAS  PubMed  Google Scholar 

  • Hou L (2010) Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl Biochem Biotechnol 160:1084–1093

    Article  CAS  PubMed  Google Scholar 

  • Hu GZ, Ronne H (1994) Overexpression of yeast PAM1 gene permits survival without protein phosphatase 2A and induces a filamentous phenotype. J Biol Chem 269:3429–3435

    CAS  PubMed  Google Scholar 

  • Inoue T, Iefuji H, Fujii T, Soga H (2000) Cloning and characterization of a gene complementing the mutation of an ethanol-sensitive mutant of sake yeast. Biosci Biotechnol Biochem 64:229–236

    Article  CAS  PubMed  Google Scholar 

  • Jones RP (1989) Biological principles for the effects of ethanol. Enzyme Microb Technol 11:130–153

    Article  CAS  Google Scholar 

  • Kang HA, Choi ES, Hong WK, Kim JY, Ko SM, Sohn JH, Rhee SK (2000) Proteolytic stability of recombinant human serum albumin secreted in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53:575–582

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Alizadeh P, Harding T, Hefner-Gravink A, Klionsky DJ (1996) Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing, and ethanol shock: potential commercial applications. Appl Environ Microbiol 62:1563–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota S, Takeo I, Kume K, Kanai M, Shitamukai A, Mizunuma M, Miyakawa T, Shimoi H, Lefuji H, Hirata D (2004) Effect of ethanol on cell growth of budding yeast: genes that are important for cell growth in the presence of ethanol. Biosci Biotechnol Biochem 68:968–972

    Article  CAS  PubMed  Google Scholar 

  • Kültz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257

    Article  PubMed  CAS  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  CAS  PubMed  Google Scholar 

  • Ma M, Liu ZL (2010) Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 87:829–845

    Article  CAS  PubMed  Google Scholar 

  • Mackey BM, Derrick CM (1982) A comparison of solid and liquid media for measuring the sensitivity of heat-injured Salmonella typhimurium to selenite and tetrathionate media, and the time needed to recover resistance. J Appl Bacteriol 53:233–242

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Pastor MT, Marchler G, Schüller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress-response element (STRE). EMBO J 15:2227–2235

    Article  PubMed  PubMed Central  Google Scholar 

  • Mobini-Dehkordi M, Nahvi I, Zarkesh-Esfahani H, Ghaedi K, Tavassoli M, Akada R (2008) Isolation of a novel mutant strain of Saccharomyces cerevisiae by an ethyl methane sulfonate-induced mutagenesis approach as a high producer of bioethanol. J Biosci Bioeng 105:403–408

    Article  CAS  PubMed  Google Scholar 

  • Okuyama H, Saito M (1979) Regulation by temperature of the chain length of fatty acids in yeast. J Biol Chem 254:12281–12284

    CAS  PubMed  Google Scholar 

  • Panadero J, Hernández-López MJ, Prieto JA, Randez-Gil F (2007) Overexpression of the calcineurin target CRZ1 provides freeze tolerance and enhances the fermentative capacity of baker’s yeast. Appl Environ Microbiol 73:4824–4831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posas F, Saito H (1998) Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator. EMBO J 17:1385–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posas F, Clotet J, Muns MT, Corominas J, Casamayor A, Arino J (1993) The gene PPG encodes a novel yeast protein phosphate involved in glycogen accumulation. J Biol Chem 268:1349–1354

    CAS  PubMed  Google Scholar 

  • Schmitt AP, McEntee K (1996) Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93:5777–5782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert C (2006) Can biofuels finally take center stage? Nat Biotechnol 24:777–784

    Article  CAS  PubMed  Google Scholar 

  • Shimoda C, Itadani A, Sugino A, Furusawa M (2006) Isolation of thermotolerant mutants by using proofreading-deficient DNA polymerase δ as an effective mutator in Saccharomyces cerevisiae. Genes Genet Syst 81:391–397

    Article  CAS  PubMed  Google Scholar 

  • Silveira MG, Baumgärtner M, Rombouts FM, Abee T (2004) Effects of adaptation to ethanol on cytoplasmic and membrane protein profiles of Oenococcus oeni. Appl Environ Microbiol 70:2748–2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley D, Fraser S, Chambers PJ, Rogers P, Stanley GA (2010) Generation and characterization of stable ethanol-tolerant mutants of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 37:139–149

    Article  CAS  PubMed  Google Scholar 

  • Suutari M, Laakso S (1994) Microbial fatty acids and thermal adaptation. Crit Rev Microbiol 20:285–328

    Article  CAS  PubMed  Google Scholar 

  • Suutari M, Liukkonen K, Laakso S (1990) Temperature adaptation in yeast: the role of fatty acids. J Gen Microbiol 136:1469–1474

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Takaoka M, Kawaguchi A, Kubo Y (2005) Effect of L-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae. Appl Environ Microbiol 71:8656–8662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi T, Shimoi H, Ito K (2001) Identification of genes required for growth under ethanol stress using transposon mutagenesis in Saccharomyces cerevisiae. Mol Genet Genomics 265:1112–1119

    Article  CAS  PubMed  Google Scholar 

  • Takatsume Y, Ohdate T, Maeta K, Nomura W, Izawa S, Inoue Y (2010) Calcineurin/Crz1 destabilizes Msn2 and Msn4 in the nucleus in response to Ca2+ in Saccharomyces cerevisiae. Biochem J 427:275–287

    Article  CAS  PubMed  Google Scholar 

  • Teixeira MC, Raposo LR, Mira NP, Lourenco AB, Sá-Correia I (2009) Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol 75:5761–5772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unaldi MN, Arikan B, Coral G (2002) Isolation of alcohol tolerant, osmotolerant and thermotolerant yeast strains and improvement of their alcohol tolerance by UV mutagenesis. Acta Microbiol Pol 51:115–120

    PubMed  Google Scholar 

  • van Voorst F, Houghton-Larsen J, Jønson L, Kielland-Brandt MC, Brandt A (2006) Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast 23:351–359

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Watanabe D, Akao T, Shimoi H (2009) Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing. J Biosci Bioeng 107:516–518

    Article  CAS  PubMed  Google Scholar 

  • Watanabe D, Wu H, Noguchi C, Zhou Y, Akao T, Shimoi H (2011) Enhancement of the initial rate of ethanol fermentation due to dysfunction of yeast stress response components Msn2p and/or Msn4p. Appl Environ Microbiol 77:934–941

    Article  CAS  PubMed  Google Scholar 

  • Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E (2010) Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 87:1303–1315

    Article  CAS  PubMed  Google Scholar 

  • Winkler A, Arkind C, Mattison CP, Burkholder A, Knoche K, Ota I (2002) Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Eukaryot Cell 1:163–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yazawa H, Iwahashi H, Uemura H (2007) Disruption of URA7 and GAL6 improves the ethanol tolerance and fermentation capacity of Saccharomyces cerevisiae. Yeast 24:551–560

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa K, Tadamasa T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H (2009) Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res 9:32–44

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (No. 2009-0081512). Hyun-Soo Kim was supported by RP-Grant 2010 of Ewha Womans University. Special thanks to Dr. WanKee Kim for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonja Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HS., Kim, NR., Yang, J. et al. Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae . Appl Microbiol Biotechnol 91, 1159–1172 (2011). https://doi.org/10.1007/s00253-011-3298-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3298-z

Keywords

Navigation