Skip to main content
Log in

Synthesis, Transport, and Electromagnetic Shielding Properties of Fe-PPy-SnO2 Nanocomposites

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Iron-decorated polypyrrole-stannic oxide (Fe-PPy-SnO2) nanocomposites were prepared by in situ polymerization. The structural characteristics, morphology, and uniform distribution of SnO2 nanoparticles in iron-decorated PPy-SnO2 nanocomposites were studied by using x-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transfer infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), etc. Also, AC and DC electrical conductivity and electromagnetic shielding interference (EMI) properties were performed. The results revealed that the conductivity increases with a decrease in weight % of SnO2 nanoparticles. It has also been observed that, from 303 K to 378 K, DC conductivity is marginally increased by the increase in temperature. The Fe- PPy-5% SnO2 sample exhibited a marginally lower resistance than that of other composites. The dielectric constant value decreases with the increase in frequency, and the maximum dielectric constant was observed for Fe-PPy-5% SnO2 and the lowest for Fe-PPy-25% SnO2. The Fe-PPy-5% SnO2 sample showed the highest shielding effectiveness as compared to other composites in the frequency range 2–3 GHz. The experimental results show that the materials exhibit useful properties, i.e., EMI shielding properties, and could be developed for different operations in electronic, electrical, and EMI shielding applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

The authors declare that all data and materials are available within the article and/or its supplementary materials.

References

  1. H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, and A.J. Heeger, Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 16, 578 (1977).

    Article  Google Scholar 

  2. M. Taunk, A. Kapil, and S. Chand, Synthesis and Electrical Characterization of Self-Supported Conducting Polypyrrole-Poly(vinylidene fluoride) Composite Films. Open Macromol. J. 2, 74 (2008).

    Article  CAS  Google Scholar 

  3. S.T. Navale, G.D. Khuspe, M.A. Chougule, and V.B. Patil, PPy/α-Fe2O3 Hybrid Nanocomposites: Effect of CSA Doping on Structural, Morphological, Optical and Electrical Transport Properties. J. Mater. Sci. Mater. Electron. 25, 65 (2014).

    Article  CAS  Google Scholar 

  4. S.E. Gamal, A.M. Ismail, and R.E. Mallawany, Dielectric and Nanoscale Free Volume Properties of Polyaniline/polyvinyl Alcohol Nanocomposites. J. Mater. Sci. Mater. Electron. 26, 7544 (2015).

    Article  Google Scholar 

  5. K. Suhailath, and M.T. Ramesan, Temperature Dependent AC Conductivity, Mechanical and Different DC Conductivity Modeling of Poly (butyl methacrylate)/samarium Doped Titanium Dioxide Nanocomposites. J. Mater. Sci. Mater. Electron. 28, 13797 (2017).

    Article  CAS  Google Scholar 

  6. M.T. Ramesan, and V. Santhi, In situ Synthesis, Characterization, Conductivity Studies of Polypyrrole/silver Doped Zinc Oxide Nanocomposites and their Application for Ammonia Gas Sensing. J. Mater. Sci. Mater. Electron. 28, 8804 (2017).

    Article  Google Scholar 

  7. K. Anuar, S. Murali, A. Fariz, and H.N.M. Mahmud Ekramul, Conducting Polymer/Clay Composites: Preparation and Characterization. Mater. Sci. 10, 255 (2004).

    Google Scholar 

  8. M.R. Nabid, and A.A. Entezami, A Novel Method for Synthesis of Water Soluble Polypyrrole with Horseradish Peroxidase Enzyme. J. Appl. Polym. Sci. 94, 254 (2004).

    Article  CAS  Google Scholar 

  9. A.G. Dumanli, A. Erden, and Y. Yurum, Development of Supercapacitor Active Composites by Electrochemical Deposition of Polypyrrole on Carbon Nanofibres. Polym. Bull. 68, 1395 (2012).

    Article  CAS  Google Scholar 

  10. S.T. Navale, G.D. Khuspe, M.A. Chougule, and V.B. Patil, Synthesis and Characterization of Hybrid Nanocomposites of Polypyrrole Filled with Iron Oxide Nanoparticles. J. Phys. Chem. Solids 75, 236 (2014).

    Article  CAS  Google Scholar 

  11. H. Behniafar, and K. Malekshahinezhad, A Unique Path to Reach Thermo-stable polypyrrole/Pd Microfibers via Chemical Oxidative Polymerization. Colloid Polym. Sci. 292, 2083 (2014).

    Article  CAS  Google Scholar 

  12. A. Kassim, Z.B. Basar, and H.N.M.E. Mahmud, Effects of Preparation Temperature on the Conductivity of Polypyrrole Conducting Polymer. J. Chem. Sci. 114, 155 (2002).

    Article  CAS  Google Scholar 

  13. H.W. Kim and S.H. Shim, Synthesis and Characteristics of SnO2 Needle-shaped Nanostructures. J. Alloy. Compd. 426, 286 (2006).

    Article  CAS  Google Scholar 

  14. Z. Chen, Y. Tian, S. Li, H. Zheng, and W. Zhang, Electrodeposition of Arborous Structure Nanocrystalline SnO2 and Application in Flexible Dye-sensitized Solar Cells. J. Alloy. Compd. 515, 57 (2012).

    Article  CAS  Google Scholar 

  15. S.R. Nalage, A.T. Mane, R.C. Pawar, C.S. Lee, and V.B. Patil, Polypyrrole-NiO Hybrid Nanocomposite Films: Highly Selective, Sensitive, and Reproducible NO2 Sensors. Ionics 20, 1607 (2014).

    Article  CAS  Google Scholar 

  16. J. Joseph, K. Deshmukh, K. Chidambaram, M. Faisal, E. Selvarajan, K.K. Sadasivuni, M.B. Ahamed, and S.K.K. Pasha, Dielectric and Electromagnetic Interference Shielding Properties of Germanium Dioxide Nanoparticle Reinforced Poly (vinyl chloride) and Poly (methylmethacrylate) Blend Nanocomposites. J. Mater. Sci. Mater. Electron. 29, 20172 (2018).

    Article  CAS  Google Scholar 

  17. M.Y. Li, S. Gupta, C. Chang, and N.H. Tai, Layered Hybrid Composites Using Multi-Walled Carbon Nanotube Film as Reflection Layer and Multi-walled Carbon Nanotubes/neodymium Magnet/epoxy as Absorption Layer Perform Selective Electromagnetic Interference Shielding. Compos. B Eng. 161, 617 (2019).

    Article  CAS  Google Scholar 

  18. R. Dhawan, R. Kumar, A. Chaudhary, S.K. Dhawan, S.R. Dhakate, and S. Kumari, Investigation on Pitch Derived Mesocarbon Spheres Based Metal Composites for Highly Efficient Electromagnetic Interference Shielding. Compos. B Eng. 175, 107168 (2019).

    Article  CAS  Google Scholar 

  19. A.K. Singh, A. Kumar, A. Srivastava, A.N. Yadav, K. Haldar, V. Gupta, and K. Singh, Lightweight Reduced Graphene Oxide-ZnO Nanocomposite for Enhanced Dielectric Loss and Excellent Electromagnetic Interference shielding. Compos. B Eng. 172, 234 (2019).

    Article  CAS  Google Scholar 

  20. H. Lu, B. Liao, H. Wang, Z. Xu, N. Li, L. Liu, X. Zhang, and N. Wu, Electromagnetic Shielding of Ultrathin, Lightweight and Strong Nonwoven Composites Decorated by a Bandage-style Interlaced Layer Electropolymerized with Polyaniline. J. Mater. Sci. Mater. Electron. 30, 20420 (2019).

    Article  CAS  Google Scholar 

  21. X.S. Hu, Y. Shen, L.S. Lu, J. Xu, and J.J. Zhen, Enhanced Electromagnetic Interference Shielding Effectiveness of Ternary PANI/CuS/RGO Composites. J. Mater. Sci. Mater. Electron. 28, 6865 (2017).

    Article  CAS  Google Scholar 

  22. L. Liu, X.M. Bian, Z.L. Hou, C.Y. Wang, Z.S. Li, H.D. Hu, X. Qi, and X. Zhang, Electromagnetic Response of Magnetic Graphene Hybrid Fillers and their Evolutionary Behaviors. J. Mater. Sci. Mater. Electron. 27, 2760 (2016).

    Article  Google Scholar 

  23. M.P. Gashti, S.T. Ghehi, S.V. Arekhloo, A. Mirsmaeeli, and A. Kiumarsi, Electromagnetic Shielding Response of UV-induced Polypyrrole/silver Coated Wool. Fibers Polym. 16, 585 (2015).

    Article  CAS  Google Scholar 

  24. G. Sun, H. Wu, Q. Liao, and Y. Zhang, Enhanced Microwave Absorption Performance of Highly Dispersed CoNi Nanostructures Arrayed on Graphene. Nano Res. 11, 2689 (2018).

    Article  CAS  Google Scholar 

  25. T.H. Ting and K.H. Wu, Synthesis and Electromagnetic Wave-Absorbing Properties of BaTiO 3/polyaniline Structured Composites in 2–40 GHz. J. Polym. Res. 20, 127 (2013).

    Article  Google Scholar 

  26. J. Luo, P. Shen, W. Yao, C. Jiang, and J. Xu, Synthesis, Characterization, and Microwave Absorption Properties of Reduced Graphene Oxide/strontium Ferrite/ Polyaniline Nanocomposites. Nanoscale Res. Lett. 11, 141 (2016).

    Article  CAS  Google Scholar 

  27. L. Nayak, D. Khastgir, and T.K. Chaki, A Mechanistic Study on Electromagnetic Shielding Effectiveness of Polysulfone/carbon Nanofibers Nanocomposites. J. Mater. Sci. 48, 1492 (2013).

    Article  CAS  Google Scholar 

  28. C.K. Madhusudhan, K. Mahendra, B.S. Madhukar, T.E. Somesh, and M. Faisal, Incorporation of Graphite into Iron Decorated Polypyrrole for Dielectric and EMI Shielding Applications. Synth. Met. 267, 116450 (2020).

    Article  CAS  Google Scholar 

  29. V. Shukla, Role of Spin Disorder in Magnetic and EMI Shielding Properties of Fe3O4/C/PPy Core/shell Composites. J. Mater. Sci. 55, 2826 (2020).

    Article  CAS  Google Scholar 

  30. M. Rahal, Y. Atassi, N.N. Ali, and I. Alghoraibi, Novel Microwave Absorbers Based on Polypyrrole and Carbon Quantum Dots. Mater. Chem. Phys. 255, 123491 (2020).

    Article  CAS  Google Scholar 

  31. P. Gahlout and V. Choudhary, EMI Shielding Response of Polypyrrole-MWCNT/Polyurethane Composites. Synth. Met. 266, 116414 (2020).

    Article  CAS  Google Scholar 

  32. P. Bhardwaj, S. Kaushik, P. Gairola, and S.P. Gairola, Exceptional Electromagnetic Radiation Shielding Performance and Dielectric Properties of Surfactant Assisted Polypyrrole-carbon Allotropes Composites. Radiat. Phys. Chem. 151, 156 (2018).

    Article  CAS  Google Scholar 

  33. P. Yan, J. Miao, J. Cao, H. Zhang, C. Wang, A. Xie, and Y. Shen, Facile Synthesis and Excellent Electromagnetic Wave Absorption Properties of Flower-Like Porous RGO/ PANI/Cu2O Nanocomposites. J. Mater. Sci. 52, 13078 (2017).

    Article  CAS  Google Scholar 

  34. M.M. Ismail, S.N. Rafeeq, J.M.A. Sulaiman, and A. Mandal, Electromagnetic Interference Shielding and Microwave Absorption Properties of Cobalt Ferrite CoFe2O4/polyaniline Composite. Appl. Phys. A 124, 380 (2018).

    Article  Google Scholar 

  35. J.M.A. Sulaiman, M.M. Ismail, S.N. Rafeeq, and A. Mandal, Enhancement of Electromagnetic Interference Shielding Based on Co0.5Zn0.5Fe2O4/PANI-PTSA Nanocomposites. Appl. Phys. A 126, 236 (2020).

    Article  CAS  Google Scholar 

  36. R. Peymanfar, A. Mohammadi, and S. Javanshir, Preparation of Graphite-like Carbon Nitride/polythiophene Nanocomposite and Investigation of its Optical and Microwave Absorbing Characteristics. Compos. Commun. 21, 100421 (2020).

    Article  Google Scholar 

  37. S. Iqbal, J. Shah, R.K. Kotnala, and S. Ahmad, Highly Efficient Low Cost EMI Shielding by Barium Ferrite Encapsulated Polythiophene Nanocomposite. J. Alloy. Compd. 779, 487 (2019).

    Article  CAS  Google Scholar 

  38. B.M. Basavaraja Patel, M. Revanasiddappa, D.R. Rangaswamy, S. Manjunatha, and Y.T. Ravikiran, Electrical Conductivity and EMI Shielding Studies of Iron-Decorated Polypyrrole-fly Ash Nanocomposites. Mater. Today Proc. 49, 2253 (2022).

    Article  Google Scholar 

  39. B.M. Basavaraja Patel, M. Revanasiddappa, D.R. Rangaswamy, S. Manjunatha, and Y.T. Ravikiran, DC Conductivity Studies of Iron Decorated Polypyrrole. J. Phys. Conf. Ser. 2070, 012070 (2021).

    Article  Google Scholar 

  40. M.A. Chougule, S.G. Pawar, S.L. Patil, B.T. Raut, P.R. Godse, S. Sen, and V.B. Patil, Polypyrrole Thin Film: Room Temperature Ammonia Gas Sensor. IEEE Sensors J. 11, 2137 (2011).

    Article  CAS  Google Scholar 

  41. D. Dodoo-Arhina, R.A. Nuamaha, P.K. Jainb, D.O. Obada, and A. Yay, Nanostructured Stannic Oxide: Synthesis and Characterization for Potential Energy Storage Applications. Results Phys. 9, 1391 (2018).

    Article  Google Scholar 

  42. S.K. Song and Y. Kang, Preparation of High Surface Area tin Oxide Powders by a Homogeneous Precipitation Method. Mater. Lett. 42, 283 (2000).

    Article  CAS  Google Scholar 

  43. H.K. Chitte, N.V. Bhat, A.V. Gore, and G.N. Shind, Synthesis of Polypyrrole Using Ammonium Peroxy Disulfate (APS) as Oxidant Together with Some Dopants for Use in Gas Sensors. Mater. Sci. Appl. 2, 1491 (2011).

    CAS  Google Scholar 

  44. K. Cheah, M. Forsyth, and V.T. Truong, Ordering and Stability in Conducting Polypyrrole. Synth. Met. 94, 215 (1998).

    Article  CAS  Google Scholar 

  45. E. Park, H. Kim, J. Song, H. Oh, H. Song, and J. Jang, Synthesis of Silver Nanoparticles Decorated Polypyrrole Nanotubes for Antimicrobial Application. Macromol. Res. 20, 1096 (2012).

    Article  CAS  Google Scholar 

  46. M. Joulazadeh and A.H. Navarchian, Ammonia Detection of One-Dimensional Nano-Structured Polypyrrole/metal Oxide Nanocomposites Sensors. Synth. Met. 210, 404 (2015).

    Article  CAS  Google Scholar 

  47. H.P. de Oliveira, Synthesis and Dielectric Characterization of Multi-walled Carbon Nanotubes/Polypyrrole/ Titanium Dioxide Composites. Fullerenes, Nanotubes, Carbon Nanostruct. 23, 339 (2015).

    Article  Google Scholar 

  48. X. Wang, B. Zhang, L. Xu, X. Wang, Y. Hu, G. Shen, and L. Sun, Dielectric Properties of Y and Nb Co-doped TiO2 Ceramics. Sci. Rep. 7, 8517 (2017).

    Article  Google Scholar 

  49. K. Praveenkumar, T. Sankarappa, J.S. Ashwajeet, and R. Ramanna, Dielectric and AC Conductivity Studies in PPy-Ag Nanocomposites. J. Polym. 2015, 1 (2015).

    Article  Google Scholar 

  50. S.A. Mazen and N.I. Abu-Elsaad, Dielectric Properties and Impedance Analysis of Polycrystalline Li-Si Ferrite Prepared by High Energy Ball Milling Technique. J. Magn. Magn. Mater. 442, 72 (2017).

    Article  CAS  Google Scholar 

  51. M. Irfan, A. Shakoor, N.A. Niaz, N. Anwar, and G. Ali, Optical and Dielectric Modulus Study of PPy-DBSA/Y2O3 Composites. J. Mater. Sci. Mater. Electron. 31, 22365 (2020).

    Article  CAS  Google Scholar 

  52. I. Haldar and A. Nayak, Dielectric Relaxation and Room Temperature Magnetoresistance under Low Magnetic Field in Polypyrrole-BaTiO3 Hybrid Nanocomposites. J. Nanosci. Nanotechnol. 17, 4658 (2017).

    Article  CAS  Google Scholar 

  53. K. Ahmed, F. Kanwal, S.M. Ramay, A. Mahmood, S. Atiq, and Y.S. Al-Zaghayer, High Dielectric Constant Study of TiO2-Polypyrrole Composites with Low Contents of Filler Prepared by In Situ Polymerization. Adv. Condens. Matter Phys. 2016, e4793434 (2016).

    Article  Google Scholar 

  54. S. Roy, S. Mishra, P. Yogi, S.K. Saxena, V. Mishra, P.R. Sagdeo, and R. Kumar, Polypyrrole–Vanadium Oxide Nanocomposite: Polymer Dominates Crystallanity and Oxide Dominates Conductivity. Appl. Phys. A. 124, 53 (2018).

    Article  Google Scholar 

  55. S. Roy, S. Mishra, P. Yogi, S.K. Saxena, V. Mishra, P.R. Sagdeo, and R. Kumar, Synthesis of Conducting Polypyrrole-Titanium Oxide Nanocomposite: Study of Structural, Optical and Electrical Properties. J. Inorg. Organomet. Polym. 27, S257 (2017).

    Article  Google Scholar 

  56. N. Kumar, N. Bastola, S. Kumar, and R. Ranjan, Relaxor Dielectric Behavior in BaTiO3 Substituted BiFeO3–PbTiO3 Multiferroic System. J. Mater. Sci. Mater. Electron. 28, 10420 (2017).

    Article  CAS  Google Scholar 

  57. R. Harshitha, V.B. Aaditya, B.M. Bharathesh, B.V. Chaluvaraju, U.P. Raghavendra, and M.V. Murugendrappa, Studies of Thermo-Electric Power and Dielectric Modulus of Polypyrrole/zirconium Oxide-Molybdenum Trioxide (PZM) Composites. J. Mater. Sci. Mater. Electron. 29, 6564 (2018).

    Article  CAS  Google Scholar 

  58. K. Mahendra, K.S. Bhat, H.S. Nagaraja, and N.K. Udayashankar, Modulations of Physio-Chemical and Electronic Properties of Metalorganic KHO Single Crystals Through Co(OH)2 Nanoparticles Doping. J Mater Sci: Mater Electron. 30, 12566 (2019).

    CAS  Google Scholar 

  59. K. Mahendra, H.K.T. Kumar, and N.K. Udayashankar, Enhanced Structural, Optical, Thermal, Mechanical and Electrical Properties by a Noval Approach (Nanoparticle Doping) on Ferroelectric Triglycine Sulphate Single Crystal. Appl. Phys. A 125, 228 (2019).

    Article  Google Scholar 

  60. K. Mohammadi, M. Sadeghi, and R. Azimirad, Facile Synthesis of SrFe12O19 Nanoparticles and its Photocatalyst Application. J. Mater. Sci. Mater. Electron. 28, 10042 (2017).

    Article  CAS  Google Scholar 

  61. B.V. Chaluvaraju, S.K. Ganiger, and M.V. Murugendrappa, Thermo-electric Power Study of Polypyrrole/molybdenum Trioxide Composites Polym. Sci. series. 57, 467 (2015).

    CAS  Google Scholar 

  62. S.L. Kadam, K.K. Patankar, C.M. Kanamadi, and B.K. Chougule, Electrical Conduction and Magnetoelectric Effect in Ni0.50 Co0.50 Fe2O4 + Ba0.8 Pb0.2TiO3 Composites. Mater. Res. Bull. 39, 2265 (2004).

    Article  CAS  Google Scholar 

  63. K.M. Rosso, D.M.A. Smith, and M. Dupuis, An ab initio Model of Electron Transport in Hematite (α-Fe2O3)(α-Fe2O3) Basal Planes. J. Chem. Phys. 118, 6455 (2003).

    Article  CAS  Google Scholar 

  64. K. Mahendra and N.K. Udayashankar, Investigation on Mechanical and Temperature Dependent Electrical Properties of Potassium Hydrogen Oxalate Oxalic Acid Dihydrate Single Crystal. Phys. Lett. A. 384, 126475 (2020).

    Article  CAS  Google Scholar 

  65. M.G. Smitha and M.V. Murugendrappa, Effect of Barium Lanthanum Manganite Nano Particle on the Electric Transport Properties of Polypyrrole at Room Temperature. J. Mater. Sci. Mater. Electron. 30, 10776 (2019).

    Article  CAS  Google Scholar 

  66. H.M.T. Farid, I. Ahmad, I. Ali, S.M. Ramay, A. Mahmood, and G. Murtaza, Dielectric and Impedance Study of Praseodymium Substituted Mg-Based Spinel Ferrites. J. Magn. Magn. Mater. 434, 143 (2017).

    Article  CAS  Google Scholar 

  67. H. Chouaib, N. Elfaleh, S. Karoui, S. Kamoun, and M.P.F. Graça, Synthesis, Crystal Structure, Thermal Analysis and Dielectric Properties of (C8H12N)3SnCl6.Cl Compound. Synth. Met. 217, 129 (2016).

    Article  CAS  Google Scholar 

  68. R.J. Sengwa, S. Sankhla, and S. Choudhary, Effect of Melt Compounding Temperature on Dielectric Relaxation and Ionic Conduction in PEO–NaClO4–MMT Nanocomposite Electrolytes. Ionics 16, 697 (2010).

    Article  CAS  Google Scholar 

  69. M.H. Abdullah and A.N. Yusoff, Complex Impedance and Dielectric Properties of an Mg–Zn Ferrite. J. Alloys Compd. 233, 129 (1996).

    Article  CAS  Google Scholar 

  70. C.K.S. Paul and K.P. Raji, Melt/solution Processable Polyaniline with Functionalized Phosphate Ester Dopants and its Thermoplastic Blends. J. Appl. Polym. Sci. 80, 1354 (2001).

    Article  CAS  Google Scholar 

  71. M.V. Murugendrappa, S. Khasim, and M.V.N. Ambika Prasad, Synthesis, Characterization and Conductivity Studies of Polypyrrole-Fly Ash Composites. Bull. Mater. Sci. 28, 565 (2005).

    Article  CAS  Google Scholar 

  72. P. Jayakrishnan and M.T. Ramesan, Synthesis, Structural, Magnetoelectric and Thermal Properties of Poly (Anthranilic acid)/Magnetite Nanocomposites. Polym. Bull. 74, 3179 (2017).

    Article  CAS  Google Scholar 

  73. B.V. Chaluvaraju, U.P. Raghavendra, T.S. Pranesha, and M.V. Murugendrappa, A Study of Thermo-Electric Power and Transport Properties of Polypyrrole/ash (Paddy Husk) Nano-Composites. J. Mater. Sci. Mater. Electron. 28, 11230 (2017).

    Article  CAS  Google Scholar 

  74. N. Parvatikar, S. Jain, S.V. Bhoraskar, and M.V.N.A. Prasad, Spectroscopic and Electrical Properties of Polyaniline/CeO2 Composites and their Application as Humidity Sensor. J. Appl. Polym. Sci. 102, 5533 (2006).

    Article  CAS  Google Scholar 

  75. M. Usman, T. Elshaarani, and F. Haq, Electrical Conductivity and Electromagnetic Interference Shielding Properties of Polymer/carbon Composites. J. Mater. Sci. Mater. Electron. 30, 16636 (2019).

    Article  Google Scholar 

  76. M. Zahid, Y. Nawab, N. Gulzar, Z.A. Rehan, M.F. Shakir, A. Afzal, I. Abdul Rashid, and A. Tariq, Fabrication of Reduced Graphene Oxide (RGO) and Nanocomposite with Thermoplastic Polyurethane (TPU) for EMI Shielding Application. J. Mater. Sci. Mater. Electron. 31, 967 (2020).

    Article  CAS  Google Scholar 

  77. C.Y. Lee, H.G. Song, J.S. Jang, E.J. Oh, and N.J. Joo, Epstein, Electromagnetic Interference Shielding Efficiency of Polyaniline Mixtures and Multilayer Films. Synth. Met. 102, 1346 (1999).

    Article  CAS  Google Scholar 

  78. Y.K. Hong, C.Y. Lee, C.K. Jeong, D.E. Lee, K. Kim, and J. Joo, Method and Apparatus to Measure Electromagnetic Interference Shielding Efficiency and its Shielding Characteristics in Broadband Frequency Ranges. Rev. Sci. Instrum. 74, 1098 (2003).

    Article  CAS  Google Scholar 

  79. Y. Wang, and X. Jing, Intrinsically Conducting Polymers for Electromagnetic Interference Shielding. Polym. Adv. Technol. 16, 344 (2005).

    Article  CAS  Google Scholar 

  80. K. Singh, A. Ohlan, P. Saini, and S.K. Dhawan, Poly (3,4-ethylenedioxythiophene) γ-Fe2O3 Polymer Composite–Super Paramagnetic Behavior and Variable Range Hopping 1D Conduction Mechanism–Synthesis and Characterization. Polym. Adv. Technol. 19, 229 (2008).

    Article  CAS  Google Scholar 

  81. J.B. Pritom, K.J. Vinoy, P.C. Ramamurthy, and G. Madras, Electromagnetic Interference Shielding Effectiveness of Polyaniline-Nickel Oxide Coated Cenosphere Composite Film. Compo. Commun. 4, 37 (2017).

    Article  Google Scholar 

  82. C.K. Madhusudhan, K. Mahendra, B.S. Madhukar, T.E. Somesh, and M. Faisal, Multifunctional Polypyrrole/multi-walled CARBON NANOTUBE Composite Material: Dielectric, Humidity Sensing and Broadband EMI Shielding Properties. Polym. Sci. Ser. B 63, 280 (2021).

    Article  CAS  Google Scholar 

  83. C.H. Abdul Kadar, M. Faisal, N. Raghavendra, N. Maruthi, B.P. Prasanna, and K.R. Nandan, Enhancing Electromagnetic Interference Shielding Effectiveness (EMI SE) of Anticorrosive Polypyrrole/zinc Tungstate Composites Multifunctional Approach. J. Mater. Sci. Mater. Electron. 33, 14188 (2022).

    Article  Google Scholar 

  84. R. Turczyn, K. Krukiewicz, A. Katunin, J. Sroka, and P. Sul, Fabrication and Application of Electrically Conducting Composites for Electromagnetic Interference Shielding of Remotely Piloted Aircraft Systems. Compo. Struct. 232, 111498 (2020).

    Article  Google Scholar 

  85. N. Gill, V. Gupta, M. Tomar, A.L. Sharma, O.P. Pandey, and D.P. Singh, Improved Electromagnetic Shielding Behaviour of Graphene Encapsulated Polypyrrole-Graphene Nanocomposite in X-Band. Compos. Sci. Technol. 192, 108113 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to PES University for providing financial assistance in the form of Internal Funding for Research Program (PESUIRF/Chemistry-ECC/2020/14 dated 30-09-2020) to conducting this research work.

Author information

Authors and Affiliations

Authors

Contributions

[BPBM] Conceptualization, Formal analysis, and investigation, Methodology, Writing—original draft. [RM] Conceptualization, Methodology, review and editing, Supervision. [RDR] Formal analysis and investigation Methodology, Writing—original draft, review and editing, Supervision.

Corresponding author

Correspondence to D. R. Rangaswamy.

Ethics declarations

Conflict of interests

All the authors contributed equally to the present work and there are no conflicts of interest among the authors.

Human and Animals Rights

This research work doesn’t involve any animal/Human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, B.M.B., Revanasiddappa, M. & Rangaswamy, D.R. Synthesis, Transport, and Electromagnetic Shielding Properties of Fe-PPy-SnO2 Nanocomposites. J. Electron. Mater. 51, 6937–6950 (2022). https://doi.org/10.1007/s11664-022-09924-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09924-w

Keywords

Navigation