Skip to main content
Log in

Synthesis, structural, magnetoelectric and thermal properties of poly (anthranilic acid)/magnetite nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly (anthranilic acid) (PANA) nanocomposites containing different content of magnetite nanoparticles (Fe3O4) were synthesized by an in situ oxidation polymerization method. The formation of nanocomposites were characterized by UV–visible spectroscopy, FT-IR, XRD, HRTEM, FE-SEM, VSM, DSC, TGA and impedance analyzer. The UV spectra of the composite materials were shifted to a higher wavelength region with respect to parent polymer. The FT-IR spectrum of polymer composite shows the presence of characteristic absorption band of Fe–O at 586 cm−1. The XRD patterns indicated the decrease in the amorphous region of composite with the addition of nanoparticles. HRTEM and SEM images revealed that the nanoparticles were uniformly dispersed in the polymer network with spherically shaped particles. Magnetic property of nanocomposites show the super-paramagnetic behavior and the saturation of magnetism linearly increased with the content of nanoparticles. DSC results indicated that the glass transition temperature of nanocomposites were much higher than that of pure PANA. TGA studies of composite showed a significant increase in the thermal stability with increase in content of Fe3O4 particles. Both the AC conductivity and dielectric properties of nanocomposites were greater than pure PANA, and the maximum electrical properties were obtained for 15 wt% of composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Acosta JL, Ojeda MC, Río CD (2006) Effect of conducting fillers on the microstructure and electrical conductivity of thermoplastic polymer composites. Polym Bull 57:199–206

    Article  CAS  Google Scholar 

  2. Chang G, Luo X, Xu Y, Hu H, Wei L, Zhang L, Lin R (2012) Poly(aryl imino sulfone) as new high-performance engineering plastics. Polym Bull 68:95–111

    Article  CAS  Google Scholar 

  3. Worzakowska M (2012) Novel DCPD-modified polyester containing epoxy groups: thermal, viscoelastic and mechanical properties of their wood flour filled copolymers. Polym Bull 68:775–787

    Article  CAS  Google Scholar 

  4. Khomskii DI (2006) Multiferroics: different ways to combine magnetism and ferroelectricity. J Mag Mag Mater 306:1–8

    Article  CAS  Google Scholar 

  5. Jasso MEC, Ruitz F, Martinez JR, Gomez AH (2008) Magnetic properties of magnetite nanoparticles synthesized by forced hydrolysis. Mater Lett 62:4248–4250

    Article  Google Scholar 

  6. Ramesan MT, Surya K (2016) Synthesis, characterization, and properties of cashew gum graft poly (acrylamide)/magnetite nanocomposites. J Appl Polym Sci 133:5431–5438

    Google Scholar 

  7. Ramesan MT (2015) Effects of magnetite nanoparticles on morphology, processability, diffusion and transport behavior of ethylene vinyl acetate nanocomposites. Int J Plast Technol 19:368–380

    Article  CAS  Google Scholar 

  8. Raja K, Verma S, Karmakar S, Das SJ, Bartwal KS (2011) Synthesis and characterization of magnetite nanocrystals. Cryst Res Technol 46:497–500

    Article  CAS  Google Scholar 

  9. Teli SB, Molina S, Calvo EG, Lozano AE, de Abajo J (2012) Preparation, characterization and antifouling property of polyethersulfone–PANI/PMA ultrafiltration membranes. Desalination 299:113–122

    Article  CAS  Google Scholar 

  10. Kaner RB (2001) Gas, liquid and enantiomeric separations using polyaniline. Synth Met 125:65–71

    Article  Google Scholar 

  11. Han MG, Im SS (1998) Processable conductive blends of polyaniline/polyimide. J Appl Polym Sci 67:1863–1870

    Article  CAS  Google Scholar 

  12. Praveen A, Koppalkar A, Roy AS (2013) Liquefied petroleum gas sensing of polyaniline–titanium dioxide nanocomposites. Sens Lett 11:242–248

    Article  Google Scholar 

  13. Ramesan MT (2014) Synthesis, characterization, and properties of new conducting polyaniline/copper sulfide nanocomposites. Polym Eng Sci 54:438–445

    Article  CAS  Google Scholar 

  14. Huag J, Kaner RB (2004) A general chemical route to polyaniline nanofibers. J Amer Chem Soc 126:851–855

    Article  Google Scholar 

  15. Ghatak S, Chakraborty G, Meikap AK, Woods T, Babu R, Blau WJ (2011) Synthesis and characterization of polyaniline/carbon nanotube composites. J Appl Polym Sci 119:1016–1025

    Article  CAS  Google Scholar 

  16. Ma F, Yuan N, Ding J (2013) The conductive network made up by the reduced graphene nanosheet/polyaniline/polyvinyl chloride. J Appl Polym Sci 128:3870–3875

    Article  CAS  Google Scholar 

  17. Jayakrishnan P, Ramesan MT (2014) Synthesis, characterization and electrical properties of Fe3O4/poly(vinyl alcohol-co-acrylic acid) nanocomposites. AIP Conf Proc 1620:165–172

    Article  Google Scholar 

  18. Gupta B, Prakash R (2011) Synthesis of functionalized conducting polymer polyanthranilic acid using various oxidizing agents and formation of composites with PVC. Polym Adv Technol 22:1982–1988

    Article  CAS  Google Scholar 

  19. Khalil AA, Shaaban AF, Azab M, Mahmoud AA, Metwally AM (2013) Synthesis, characterization and morphology of polyanthranilic acid micro-and nanostructures. J Polym Res 20:142–145

    Article  Google Scholar 

  20. Satapathy S, Mukherjee C, Shaktawat T, Gupta PK, Sathe VG (2012) Blue shift of optical band-gap in LiNbO3 thin films deposited by sol–gel technique. Thin Solid Films 520:6510–6514

    Article  CAS  Google Scholar 

  21. Kumar D (2000) Synthesis and characterization of poly(aniline-co-o-toluidine) copolymer. Synth Met 114:369–372

    Article  CAS  Google Scholar 

  22. Bajpai UDN, Jain A, Rai SJ (1990) Grafting of polyacrylamide on to guar gum using K2S2O8 ascorbic acid redox system. J Appl Polym Sci 39:2187–2204

    Article  CAS  Google Scholar 

  23. Ramesan MT (2014) Fabrication, characterization and properties of poly (ethylene-co-vinyl acetate)/magnetite nanocomposites. J Appl Polym Sci 131:3681–3689

    Article  Google Scholar 

  24. Ramesan MT, Jayakrishnan P (2016) Role of nickel oxide nanoparticles on magnetic, thermal and temperature dependent electrical conductivity of novel poly(vinyl cinnamate) based nanocomposites: applicability of different conductivity models. J Inorg Organomet Polym. doi:10.1007/s10904-016-0456-x

    Google Scholar 

  25. Kong I, Ahmad SH, Abdullah MH, Hui D, Yusoff AN, Puryanti D (2010) Magnetic and microwave absorbing properties of magnetite thermoplastic natural rubber composites. J Magn Magn Mater 322:3401–3409

    Article  CAS  Google Scholar 

  26. Mousavia S, Dehaghan HE, Ashouri D, Sadeghipour H, Jabbari F (2012) Magnetic and microwave absorbing properties of magnetite–thermoplastic natural rubber nanocomposites. J Polym Res 19:9991–9999

    Article  Google Scholar 

  27. Ogura K, Shiigi H, Nakayam M, Ogawa A (1999) Thermal properties of polyanthranilic acid (PANA) and humidity sensitive composites derived from heat-treated PANA and poly(vinyl alcohol). J Polym Sci, Part A: Polym Chem 37:4458–4465

    Article  CAS  Google Scholar 

  28. Suhailath K, Ramesan MT, Naufal B, Periyat P, Jasna VC, Jayakrishnan P (2016) Synthesis, characterisation and flame, thermal and electrical properties of poly (n-butyl methacrylate)/titanium dioxide nanocomposites. Polym Bull. doi:10.1007/s00289-016-1737-9

    Google Scholar 

  29. Khan A, Khalid M (2010) Synthesis of nano-sized ZnO and polyaniline-zinc oxide composite: characterization, stability in terms of DC electrical conductivity retention and application in ammonia vapor detection. J Appl Polym Sci 117:1601–1607

    CAS  Google Scholar 

  30. Yang Y, Mu S (2008) Synthesis and high electrochemical activity of poly(aniline-co-2-amino-4-hydroxybenzenesulfonic acid). Electrochim Acta 54:506–512

    Article  CAS  Google Scholar 

  31. Ramesan MT, Pradyumnan PP (2011) Synthesis and electrical conductivity studies of poly (methyl methacrylate) in presence of transition metal ions. AIP Conf Proc 1391:658–660

    Article  CAS  Google Scholar 

  32. Ramesan MT (2015) Processing characteristics and mechanical and electrical properties of chlorinated styrene butadiene rubber/fly ash composites. J Thermoplast Comp Mater 28:1286–1300

    Article  CAS  Google Scholar 

  33. Vijayalakshmi RR, Sridhar MH (2002) Effect of P-toluene sulphonic acid on the dielectric properties of poly (4-vinylpyridine). Mater Sci Eng, A 325:73–78

    Article  Google Scholar 

  34. Ramesan MT (2014) Dynamic mechanical properties, magnetic and electrical behavior of iron oxide/ethylene vinyl acetate nanocomposites. Polym Compos 35:1989–1996

    Article  CAS  Google Scholar 

  35. Varalaxmi N, Sasikumar KV (2010) Studies on AC and DC electrical conductivity and thermo-electric power of NiMgCuZn ferrites. Int J Nanoparticles 3:349–366

    Article  CAS  Google Scholar 

  36. Nihmath A, Ramesan MT (2016) Preparation, characterization, thermal, and electrical properties of chlorinated ethylene propylene diene monomer/hydroxyapatite nanocomposites. Polym Compos. doi:10.1002/pc.24171

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. P. P. Pradyumnan, Department of Physics, University of Calicut, and Prof. P. Pradeep, Department of Physics, NIT Calicut, for providing necessary facilities in the department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Ramesan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayakrishnan, P., Ramesan, M.T. Synthesis, structural, magnetoelectric and thermal properties of poly (anthranilic acid)/magnetite nanocomposites. Polym. Bull. 74, 3179–3198 (2017). https://doi.org/10.1007/s00289-016-1883-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1883-0

Keywords

Navigation