Skip to main content
Log in

A unique path to reach thermostable polypyrrole/Pd microfibers via chemical oxidative polymerization

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Polypyrrole/palladium (PPy/Pd) nanocomposites, labeled by PPy/Pd-2/1-0, PPy/Pd-2/1-25, and PPy/Pd-3/1-0, are synthesized via a direct redox reaction between pyrrole monomer and PdCl2 in the presence of sodium dodecyl sulfate (SDS) stabilizer in chloroform (CHCl3)/acetonitrile (CH3CN) binary organic solvents with 2:1 and 3:1 volume ratios at two temperatures involving 0 and 25 °C. A Pd-unloaded polypyrrole (PPy-2/1-0) is also synthesized similarly using iron(III) chloride (FeCl3) oxidant for comparison purposes. The volume ratio of the solvents used as well as the temperature at which the oxidative polymerization takes place affects significantly the thermostability of the resulting nanocomposites. According to the thermogravimetric analyses, the stability order towards heat is found to be PPy/Pd-2/1-25 > PPy/Pd-2/1-0 > PPy/Pd-3/1-0 > PPy-2/1-0. The nanocomposite PPy/Pd-2/1-25 shows clearly more thermostability compared to PPy/Pd-2/1-0 analog at temperatures above 400 °C. Furthermore, whereas three discrete maxima can be obviously found in the differential thermal analysis (DTA) thermogram of PPy-2/1-0 pure sample, no distinctive exothermic peak is observed in the curves of the three Pd-loaded nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Seechurn CC, Kitching MO, Colacot KT, Snieckus V (2012) Angew Chem Int Ed 51:5062

    Article  Google Scholar 

  2. Shen Q, Min Q, Shi J, Jiang L, Zhang JR, Hou W, Zhu JJ (2009) J Phys Chem C113:1267

    Google Scholar 

  3. Athilakshmi J, Chand DK (2011) J Chem Sci 123:875

    Article  CAS  Google Scholar 

  4. Kijima T, Yoshimura T, Uota M, Ikeda T, Fujikawa D, Mouri S, Uoyama S (2004) Angew Chem Int Ed 43:228

    Article  CAS  Google Scholar 

  5. Shankar R, Sahoo U (2013) J Polym Sci A Polym Chem 51:1129

    Article  CAS  Google Scholar 

  6. Li K, Fan X, Qi J, Ji J, Wang S, Zhang G, Zhang F (2010) Nano Res 3:429

    Article  CAS  Google Scholar 

  7. Lyubimov SE, Vasilev AA, Korlyukov AA, Llyin MM, Pisarev SA, Matveev VV, Chalykh AE, Zlotin SG, Davankov VA (2009) React Funct Polym 69:755–758

    Article  CAS  Google Scholar 

  8. Domenech B, Munoz M, Muraviev DN, Macanas J (2012) Catal Today 193:158

    Article  CAS  Google Scholar 

  9. Harraz FA, El-Hout SE, Killa HM, Ibrahim IA (2012) J Catal 286:184

    Article  CAS  Google Scholar 

  10. Davis LM, Compton JM, Kranbuehl DE, Thompson DW, Southward RE (2006) J Appl Polym Sci 102:2708

    Article  CAS  Google Scholar 

  11. Valmikanathan OP, Ostroverkhova O, Mulla IS, Vijayamohanan V, Atre SV (2008) Polymer 49:3413

    Article  CAS  Google Scholar 

  12. Grodzinski JJ (2002) Polym Adv Technol 13:615

    Article  Google Scholar 

  13. Houdayer A, Schneider R, Billaud D, Ghanbaja J, Lambert J (2005) Appl Organomet Chem 19:1239

    Article  CAS  Google Scholar 

  14. Li L, Yan G, Wu J, Yu X, Guo Q, Ma Z, Huang Z (2009) J Polym Res 16:421

    Article  CAS  Google Scholar 

  15. Giri S, Ghosh D, Malas A, Das CK (2013) J Electron Mater 42:2595

    Article  CAS  Google Scholar 

  16. Harish S, Mathiyarasu J, Phani KLN, Yegnaraman V (2008) J Appl Electrochem 38:1583

    Article  CAS  Google Scholar 

  17. Atta NF, El-Kady MF (2009) Talanta 79:639

    Article  CAS  Google Scholar 

  18. Likhar PR, Roy M, Roy S, Subhas MS, Kantam ML, Sreedhar B (2008) Adv Synth Catal 350:1968

    Article  CAS  Google Scholar 

  19. Jang WK, Yun J, Kim HI, Lee YS (2013) Colloid Polym Sci 291:1095

    Article  CAS  Google Scholar 

  20. Hatchett DW, Josowicz M (2008) Chem Rev 108:746

    Article  CAS  Google Scholar 

  21. Becerik I, Suzer S, Kadirgan F (1999) J Electroanal Chem 476:171

    Article  CAS  Google Scholar 

  22. Cioffi N, Torsi L, Sabbatini L, Zambonin PG, Bleve-Zacheo T (2000) J Electroanal Chem 488:42

    Article  CAS  Google Scholar 

  23. Cioffi N, Torsi L, Losito L, Sabbatini L, Zambonin PG, Bleve-Zacheo T (2001) Electrochim Acta 46:4205

    Article  CAS  Google Scholar 

  24. Freund MS, Henry MC, Hsueh CC, Timko BP (2001) J Electrochem Soc 148:D155

    Article  Google Scholar 

  25. Vasilyeva SV, Vorotyntsev MA, Beezverkhyy I, Chassagnon R, Heintz O, Lesniewska E (2008) J Phys Chem C 112:19878

    Article  CAS  Google Scholar 

  26. Ding K, Jia H, Wei S, Guo Z (2011) Ind Eng Chem Res 50:7077

    Article  CAS  Google Scholar 

  27. Ohtaka A, Kono Y, Teratani T, Fujii S, Matsuzawa S, Nakamura Y, Nomura S (2011) Catal Lett 141:1097

    Article  CAS  Google Scholar 

  28. Fujii S, Matsuzawa S, Hamasaki H, Nakamura Y, Bouleghlimat A, Buurma NJ (2012) Langmuir 28:2436

    Article  CAS  Google Scholar 

  29. Hamasaki H, Fukui N, Fujii S, Yusa S, Nakamura Y (2013) Colloid Polym Sci 291:223

    Article  CAS  Google Scholar 

  30. Behniafar H, Moaref H (2013) J Polym Res 20:Article132

    Article  Google Scholar 

  31. Chao TH, March J (1988) J Polym Sci A Polym Chem 26:743

    Article  CAS  Google Scholar 

  32. Partch R, Gangolli SG, Matijevic E, Cai W, Arajs S (1991) J Colloid Interface Sci 144:27

    Article  CAS  Google Scholar 

  33. Xia Y, Yang J (2010) Synth Met 160:1688

    Article  CAS  Google Scholar 

  34. Lin CM, Hung TS, Huang YH, Wu KT, Tang MT, Lee CH, Chen CT, Chen YY (2007) Phys Rev B75:125426

    Article  Google Scholar 

  35. Cao D, Sun L, Wang G, Lv Y, Zhang M (2008) J Electroanal Chem 621:31

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to the Faculty of Chemistry and Research Council of Damghan University for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Behniafar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behniafar, H., Malekshahinezhad, K. A unique path to reach thermostable polypyrrole/Pd microfibers via chemical oxidative polymerization. Colloid Polym Sci 292, 2083–2088 (2014). https://doi.org/10.1007/s00396-014-3243-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3243-7

Keywords

Navigation