Skip to main content
Log in

Electrical conductivity and electromagnetic interference shielding properties of polymer/carbon composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ferrocene-based polythiophene (PT) composites containing different carbon fillers like multi-walled carbon nanotubes (MWCNTs), reduced graphene oxide (RGO) and carbon black (CB) were prepared through in situ chemical oxidative polymerization method. The prepared PT composites were characterized by employing SEM, TEM, FTIR, XRD and XPS techniques. The thermal stability of the PT composites was investigated by TG analysis. It was found that the thermal stability of PT composites was highly improved as compared with pure PT. The electrical conductivity of the composites was measured by a typical four-probe method. Electrical conductivity measurements indicated that the PT composites showed excellent electrical conductivity. Electromagnetic interference shielding effectiveness (EMI SE) of the composites was measured by using coaxial method in the frequency range of 1–4.5 GHz. The total shielding effectiveness (SET) achieved for PT composites along with MWCNT, RGO and CB was − 24 dB, − 11.27 dB, and − 10.46 dB at 50 wt% composite sample loading in the paraffin wax matrix, respectively. Therefore, the PT-MWCNT composite can be used for the EMI shielding applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y. Zhang, Y. Huang, T. Zhang et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015)

    Article  Google Scholar 

  2. L. Wang, Y. Huang, X. Sun et al., Synthesis and microwave absorption enhancement of graphene/Fe3O4/SiO2/NiO nanosheet hierarchical structures. Nanoscale 6, 3157–3164 (2014)

    Article  Google Scholar 

  3. Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013)

    Article  Google Scholar 

  4. F. Shahzad, M. Alhabeb, C.B. Hatter et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016)

    Article  Google Scholar 

  5. Q.Y. Wen, H.W. Zhang, Q.H. Yang et al., A tunable hybrid metamaterial absorber based on vanadium oxide films. J. Phys. D-Appl. Phys. 45, 1–5 (2012)

    Google Scholar 

  6. B.R. Kim, H.K. Lee, E. Kim, S.H. Lee, Intrinsic electromagnetic radiation shielding/absorbing characteristics of polyaniline-coated transparent thin films. Synth. Met. 160, 1838–1842 (2010)

    Article  Google Scholar 

  7. J.M. Thomassin, C. Jerome, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R 74, 211–232 (2013)

    Article  Google Scholar 

  8. M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60, 146–156 (2013)

    Article  Google Scholar 

  9. S. Sankaran, K. Deshmukh, M.B. Ahamed, S.K. Khadheer Pasha, Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos. Part A-Appl. S 114, 49–71 (2018)

    Article  Google Scholar 

  10. J. Yang, M. Ye, A. Han, Y. Zhang, K. Zhang, Preparation and electromagnetic attenuation properties of MoS2–PANI composites: a promising broadband absorbing material. J. Mater. Sci. 30, 292–301 (2019)

    Google Scholar 

  11. H. Zhu, Y. Yang, H. Duan, G. Zhao, Y. Liu, Electromagnetic interference shielding polymer composites with magnetic and conductive FeCo/reduced graphene oxide 3D networks. J. Mater. Sci. 30, 2045–2056 (2019)

    Google Scholar 

  12. A. Nazir, H. Yu, L. Wang et al., Recent progress in the modification of carbon materials and their application in composites for electromagnetic interference shielding. J. Mater. Sci. 53, 8699–8719 (2018)

    Article  Google Scholar 

  13. M. Arjmand, T. Apperley, M. Okoniewski, U. Sundararaj, Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon 50, 5126–5134 (2012)

    Article  Google Scholar 

  14. S.M.S. Ghezghapan, A. Javadi, Effect of processing methods on electrical percolation and electromagnetic shielding of PC/MWCNTs nanocomposites. Polym. Compos. 38, E269–E276 (2017)

    Article  Google Scholar 

  15. K. Zhang, H.O. Yu, Y.D. Shi et al., Morphological regulation improved electrical conductivity and electromagnetic interference shielding in poly(L-lactide)/poly(epsilon-caprolactone)/carbon nanotube nanocomposites via constructing stereocomplex crystallites. J. Mater. Chem. C 5, 2807–2817 (2017)

    Article  Google Scholar 

  16. D.X. Yan, H. Pang, B. Li et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25, 559–566 (2015)

    Article  Google Scholar 

  17. J.N. Gavgani, H. Adelnia, D. Zaarei, M. Moazzami Gudarzi, Lightweight flexible polyurethane/reduced ultralarge graphene oxide composite foams for electromagnetic interference shielding. RSC Adv. 6, 27517–27527 (2016)

    Article  Google Scholar 

  18. X.S. Hu, Y. Shen, L.S. Lu, J. Xu, J.J. Zhen, Enhanced electromagnetic interference shielding effectiveness of ternary PANI/CuS/RGO composites. J. Mater. Sci. 28, 6865–6872 (2017)

    Google Scholar 

  19. M.H. Al-Saleh, U. Sundararaj, X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites. J. Phys. D Appl. Phys. 46, 035304 (2013)

    Article  Google Scholar 

  20. P. Jin Gyu, L. Jeffrey, C. Qunfeng et al., Electromagnetic interference shielding properties of carbon nanotube buckypaper composites. Nanotechnology 20, 415702 (2009)

    Article  Google Scholar 

  21. K. Hu, B. Xu, H. Shao, Determination of hydrophobicity scale of tetraphenylborate and its derivatives by ferrocene based three-phase electrodes. Electrochem. Commun. 50, 36–38 (2015)

    Article  Google Scholar 

  22. A. Alkan, A. Natalello, M. Wagner, H. Frey, F.R. Wurm, Ferrocene containing multifunctional polyethers: monomer sequence monitoring via quantitative 13C NMR spectroscopy in bulk. Macromolecules 47, 2242–2249 (2014)

    Article  Google Scholar 

  23. Z. Bicil, P. Camurlu, B. Yucel, B. Becer, Multichromic, ferrocene clicked poly(2,5-dithienylpyrrole)s. J. Polym. Res. 20, 1–6 (2013)

    Article  Google Scholar 

  24. R. Kumar, S.R. Dhakate, P. Saini, R.B. Mathur, Improved electromagnetic interference shielding effectiveness of light weight carbon foam by ferrocene accumulation. RSC Adv. 3, 4145–4151 (2013)

    Article  Google Scholar 

  25. M.O. Ansari, M.M. Khan, S.A. Ansari, M.H. Cho, Polythiophene nanocomposites for photodegradation applications: past, present and future. J. Saudi Chem. Soc. 19, 494–504 (2015)

    Article  Google Scholar 

  26. S. Kim, J.S. Oh, M.G. Kim et al., Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition. ACS Appl. Mater Interface 6, 17647–17653 (2014)

    Article  Google Scholar 

  27. Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 5, 2131–2134 (2005)

    Article  Google Scholar 

  28. Z. Liu, G. Bai, Y. Huang et al., Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon 45, 821–827 (2007)

    Article  Google Scholar 

  29. W.L. Song, M.A. Cao, M.-M.A. Lu et al., Alignment of graphene sheets in wax composites for electromagnetic interference shielding improvement. Nanotechnology 24, 115708 (2013)

    Article  Google Scholar 

  30. Q.K. Hu, Myung Soo, Electromagnetic interference shielding properties of CO2 activated carbon black filled polymer coating materials. Carbon Lett. 9, 298–302 (2008)

    Article  Google Scholar 

  31. S.K. Unnikrishnan, S. Vinayasree, G.P. Halliah, M.R. Anantharaman, Flexible electromagnetic interference shields in S band region from textile materials. J. Ind. Text. 43, 215–230 (2013)

    Article  Google Scholar 

  32. Y.K. Hong, C.Y. Lee, C.K. Jeong, D.E. Lee, K. Kim, J. Joo, Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges. Rev. Sci. Instrum. 74, 1098–1102 (2003)

    Article  Google Scholar 

  33. K. Lakshmi, H. John, K.T. Mathew, R. Joseph, K.E. George, Microwave absorption, reflection and EMI shielding of PU–PANI composite. Acta Mater. 57, 371–375 (2009)

    Article  Google Scholar 

  34. G. Wang, V. Babaahmadi, N. He et al., Wearable supercapacitors on polyethylene terephthalate fabrics with good wash fastness and high flexibility. J. Power Sources 367, 34–41 (2017)

    Article  Google Scholar 

  35. S. Stankovich, D.A. Dikin, R.D. Piner et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

  36. H. Khalid, L. Wang, H. Yu et al., Synthesis of soluble ferrocene-based polythiophenes and their properties. J. Inorg. Organomet. 25, 1511–1520 (2015)

    Article  Google Scholar 

  37. T. Cai, Y. Zhou, E. Wang et al., Low bandgap polymers synthesized by FeCl3 oxidative polymerization. Sol. Energy Mater. Sol. C 94, 1275–1281 (2010)

    Article  Google Scholar 

  38. H. Khalid, H. Yu, L. Wang et al., Synthesis of ferrocene-based polythiophenes and their applications. Polym. Chem. 5, 6879–6892 (2014)

    Article  Google Scholar 

  39. F. Andreani, L. Angiolini, V. Grenci, E. Salatelli, Optically active polyalkylthiophenes: synthesis and polymerization of chiral, symmetrically substituted, quinquethiophene monomer. Synth. Met. 145, 221–227 (2004)

    Article  Google Scholar 

  40. B.H. Patil, A.D. Jagadale, C.D. Lokhande, Synthesis of polythiophene thin films by simple successive ionic layer adsorption and reaction (SILAR) method for supercapacitor application. Synth. Met. 162, 1400–1405 (2012)

    Article  Google Scholar 

  41. F. Alvi, M.K. Ram, P.A. Basnayaka, E. Stefanakos, Y. Goswami, A. Kumar, Graphene–polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor. Electrochim. Acta 56, 9406–9412 (2011)

    Article  Google Scholar 

  42. R.L. Wang, V. Sivakumar, T.W. Johnson, G. Hastings, FTIR difference spectroscopy in combination with isotope labeling for identification of the carbonyl modes of P700 and P700(+) in photosystem I. Biophys. J. 86, 1061–1073 (2004)

    Article  Google Scholar 

  43. S. Park, K.S. Lee, G. Bozoklu, W. Cai, S.T. Nguyen, R.S. Ruoff, Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2, 572–578 (2008)

    Article  Google Scholar 

  44. C. Cunha, S. Panseri, D. Iannazzo et al., Hybrid composites made of multiwalled carbon nanotubes functionalized with Fe3O4 nanoparticles for tissue engineering applications. Nanotechnology 23, 465102 (2012)

    Article  Google Scholar 

  45. C.D. Zappielo, D.M. Nanicuacua, W.N.L. dos Santos et al., Solid phase extraction to on-line preconcentrate trace cadmium using chemically modified nano-carbon black with 3-mercaptopropyltrimethoxysilane. J. Braz. Chem. Soc. 27, 1715–1726 (2016)

    Google Scholar 

  46. E. Tahmasebi, Y. Yamini, M. Moradi, A. Esrafili, Polythiophene-coated Fe3O4 superparamagnetic nanocomposite: synthesis and application as a new sorbent for solid-phase extraction. Anal. Chim. Acta 770, 68–74 (2013)

    Article  Google Scholar 

  47. J. Zhao, Y. Xie, Z. Le et al., Preparation and characterization of an electromagnetic material: the graphene nanosheet/polythiophene composite. Synth. Met. 181, 110–116 (2013)

    Article  Google Scholar 

  48. Q. Zhang, L. Jiao, C. Shan, G. Yang, X. Xu, L. Niu, Synthesis and properties of ferrocene-functionalised polythiophene derivatives. Synth. Met. 159, 1422–1426 (2009)

    Article  Google Scholar 

  49. O. Zabihi, A. Khodabandeh, S.M. Mostafavi, Preparation, optimization and thermal characterization of a novel conductive thermoset nanocomposite containing polythiophene nanoparticles using dynamic thermal analysis. Polym. Degrad. Stabil. 97, 3–13 (2012)

    Article  Google Scholar 

  50. R. Atchudan, J. Joo, A. Pandurangan, An efficient synthesis of graphenated carbon nanotubes over the tailored mesoporous molecular sieves by chemical vapor deposition. Mater. Res. Bull. 48, 2205–2212 (2013)

    Article  Google Scholar 

  51. J. Sun, X. Shu, Y. Tian et al., Facile preparation of polypyrrole-reduced graphene oxide hybrid for enhancing NH3 sensing at room temperature. Sens. Actuators B Chem. 241, 658–664 (2017)

    Article  Google Scholar 

  52. T. Ungar, J. Gubicza, G. Ribarik, C. Pantea, T.W. Zerda, Microstructure of carbon blacks determined by X-ray diffraction profile analysis. Carbon 40, 929–937 (2002)

    Article  Google Scholar 

  53. J. Heeg, C. Kramer, M. Wolter, S. Michaelis, W. Plieth, W.J. Fischer, Polythiophene—O3 surface reactions studied by XPS. Appl. Surf. Sci. 180, 36–41 (2001)

    Article  Google Scholar 

  54. S. Karamat, R.S. Rawat, P. Lee, T.L. Tan, R.V. Ramanujan, Structural, elemental, optical and magnetic study of Fe doped ZnO and impurity phase formation. Prog. Nat. Sci. 24, 142–149 (2014)

    Article  Google Scholar 

  55. S. Suzer, Electron spectroscopic investigation of polymers and glasses. Pure Appl. Chem. 69, 163–168 (1997)

    Article  Google Scholar 

  56. C.M. Woodbridge, D.L. Pugmire, R.C. Johnson, N.M. Boag, M.A. Langell, HREELS and XPS studies of ferrocene on Ag(100). J. Phys. Chem. B 104, 3085–3093 (2000)

    Article  Google Scholar 

  57. Q. Dong, X. Zhuang, Z. Li et al., Efficient approach to iron/nitrogen co-doped graphene materials as efficient electrochemical catalysts for the oxygen reduction reaction. J. Mater. Chem. A 3, 7767–7772 (2015)

    Article  Google Scholar 

  58. C.M. Wong, D.B. Walker, A.H. Soeriyadi, J.J. Gooding, B.A. Messerle, A versatile method for the preparation of carbon-rhodium hybrid catalysts on graphene and carbon black. Chem. Sci. 7, 1996–2004 (2016)

    Article  Google Scholar 

  59. M. Mishra, A.P. Singh, V. Gupta, A. Chandra, S.K. Dhawan, Tunable EMI shielding effectiveness using new exotic carbon: polymer composites. J. Alloy. Compd. 688, 399–403 (2016)

    Article  Google Scholar 

  60. A.C. de Souza, A.T.N. Pires, V. Soldi, Thermal stability of ferrocene derivatives and ferrocene-containing polyamides. J. Therm. Anal. 70, 405–414 (2002)

    Article  Google Scholar 

  61. M. Jana, S. Saha, P. Khanra et al., Non-covalent functionalization of reduced graphene oxide using sulfanilic acid azocromotrop and its application as a supercapacitor electrode material. J. Mater. Chem. A 3, 7323–7331 (2015)

    Article  Google Scholar 

  62. W. Yang, B. Shao, T. Liu et al., Robust and mechanically and electrically self-healing hydrogel for efficient electromagnetic interference shielding. ACS Appl. Mater. Interface 10, 8245–8257 (2018)

    Article  Google Scholar 

  63. K. Jagatheesan, A. Ramasamy, A. Das, A. Basu, Electromagnetic shielding behaviour of conductive filler composites and conductive fabrics—a review. Indian J. Fibre Text. 39, 329–342 (2014)

    Google Scholar 

  64. A. Joshi, S. Datar, Carbon nanostructure composite for electromagnetic interference shielding. Pramana-J. Phys. 84, 1099–1116 (2015)

    Article  Google Scholar 

  65. P. Saini, V. Choudhary, N. Vijayan, R.K. Kotnala, Improved electromagnetic interference shielding response of poly(aniline)-coated fabrics containing dielectric and magnetic nanoparticles. J. Phys. Chem. C 116, 13403–13412 (2012)

    Article  Google Scholar 

  66. S.T. Hsiao, C.C.M. Ma, H.W. Tien et al., Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a water-borne polyurethane composite. ACS Appl. Mater. Interface 7, 2817–2826 (2015)

    Article  Google Scholar 

  67. B. Zhao, C.X. Zhao, R.S. Li, S.M. Hamidinejad, C.B. Park, Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly(vinylidene fluoride)/carbon composite films. ACS Appl. Mater. Interface 9, 20873–20884 (2017)

    Article  Google Scholar 

  68. C.L. Huang, Y.J. Wang, Y.C. Fan, C.L. Hung, Y.C. Liu, The effect of geometric factor of carbon nanofillers on the electrical conductivity and electromagnetic interference shielding properties of poly(trimethylene terephthalate) composites: a comparative study. J. Mater. Sci. 52, 2560–2580 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haojie Yu or Li Wang.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazir, A., Yu, H., Wang, L. et al. Electrical conductivity and electromagnetic interference shielding properties of polymer/carbon composites. J Mater Sci: Mater Electron 30, 16636–16650 (2019). https://doi.org/10.1007/s10854-019-02043-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02043-z

Navigation