Skip to main content
Log in

Effect of barium lanthanum manganite nano particle on the electric transport properties of polypyrrole at room temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Barium lanthanum manganite (La0.7Ba0.3MnO3: LBM) synthesized by Sol–Gel method was studied as a composite material with organic conducting polymer polypyrrole (PPy) synthesized by in situ chemical oxidation method. Characterizations like SEM, TEM, FTIR and XRD were studied. Electrical conductivity and transport studies like dielectric constant, dielectric loss, complex electric and impedance modulus were analyzed using LCR impedance analyzer at room temperature in the frequency range 100 Hz–5 MHz. SEM and TEM images of LBM nano particle shows agglomerated orthorhombic structure, PPy forms clusters with spherical shape and PPy/LBM nano composites shows spherical structure with LBM embedded in PPy chain and with reduction of volume fraction. XRD of LBM shows the orthorhombic crystal structure, PPy confirms the amorphous nature and PPy/LBM nano composites shows semi crystalline phase. Electrical conductivity measurements of all the samples show relaxing behavior. Transport properties show good dielectric constant value with a very low dielectric loss for PPY/LBM nano composites than pure PPy. The highest dielectric constant value was observed for PPy/LBM40 nano composite the value being 171 at 10 kHz corresponding dielectric loss is 0.43 which is less when compared to pure PPy having dielectric constant 130 at 10 kHz and dielectric loss being 1.13. The complex electric and impedance modulus shows both grain and grain boundary effects. The study shows that by incorporating LBM nano particle in the PPy chain shows better value than as prepared PPy sample. Also when compared to our previous work on calcium doped lanthanum manganite (LCM) with polypyrrole as host the composite of PPy/LBM showed better electrical conductivity and transport properties. Thus incorporation of LBM nano particle to the PPy chain has resulted in the enhancement of electric transport properties. The present work reveals that the PPy/LBM nano composite can also be a promising material as an electrical storage device as well its application as an organic transistor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.-R. Wenk, A. Bulakh, Minerals: Their Constitution and Origin (Cambridge University Press, New York, 2004). ISBN 978-0-521-52958-7

    Book  Google Scholar 

  2. G.H. Haertling, Ferroelectric ceramics: history and technology. Am. Ceram. Soc. 82(4), 797–818 (1999)

    Article  CAS  Google Scholar 

  3. B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric ceramics (Academic Press, London and New York, 1971)

    Google Scholar 

  4. G.A. Smolenskii, V.A. Bokov, V.A. Isupov, N.N. Krainik, R.E. Pasynkov, A.I. Sokolov, Ferroelectrics and Related Material’s (Gordon and Breach Science Publishers, New York, 1984)

    Google Scholar 

  5. J. Mark, R.H. Silsbee, Interfacial charge-spin coupling: injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985)

    Article  Google Scholar 

  6. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Giant magneto resistance of (001) Fe/(001)Cr magnetic super lattices. Phys. Rev. Lett. 61(21), 2472–2475 (1988)

    Article  CAS  Google Scholar 

  7. A.G. Bhavani, W.Y. Kim, J.S. Lee, Barium substituted lanthanum manganite perovskite for CO2 reforming of methane. ACS Catal. 3(7), 1537–1544 (2013)

    Article  CAS  Google Scholar 

  8. M.D. Bhatt, G. Lee, J.S. Lee, Oxygen reduction reaction mechanisms on Al-doped X-graphene (X = N, P, and S) catalysts in acidic medium: a comparative DFT study. J. Phys. Chem. C 120(46), 26435–26441 (2016)

    Article  CAS  Google Scholar 

  9. M.B. Salamon, M. Jaime, The physics of manganites: structure and transport. Rev. Mod. Phys. 73, 583–628 (2001)

    Article  CAS  Google Scholar 

  10. S.O. Manjunatha, A. Rao, G.S. Okram, Investigation on structural, magneto-transport, magnetic and thermal properties of La0.8Ca0.2−xBaxMnO3 (0 ≤ x ≤ 0.2) manganites. J. Alloys Compd. 640, 154–161 (2015)

    Article  CAS  Google Scholar 

  11. S.O. Manjunatha, A. Rao, T.-Y. Lin, C.-M. Chang, Y.-K. Kuo, Effect of Ba substitution on structural, electrical and thermal properties of La0.65Ca0.35xBaxMnO3 (0 6 × 6 0.25) manganites. J. Alloys Compd. 619, 303–310 (2015)

    Article  CAS  Google Scholar 

  12. F. Ayadi, Y. Regaieg, W. Cheikhrouhou, M. Koubaa, A. Cheikhrouhou, H.L. Nowak, S. Ammar, L. Sicard, Preparation of nanostructured La0.7Ca0.3−xBaxMnO3 ceramics by a combined sol–gel and spark plasma sintering route and resulting magneto caloric properties. J. Magn. Magn. Mater. 381, 215–220 (2015)

    Article  CAS  Google Scholar 

  13. Y. Teraoka, T. Nobunaga, K. Okamoto, N. Miura, N. Yamazoe, Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability. Solid State Ion. 48(3–4), 207–212 (1991)

    Article  CAS  Google Scholar 

  14. M.P. van Dijk, J.H.H. ter Maat, G. Roelofs, H. Bosch, G.M.H. van de Velde, P.J. Gellings, A.J. Burggraaf, Electrical and catalytic properties of some oxides with the fluorite or pyrochlore structure part I: synthesis, characterization and conductivity. Mater. Res. Bull 19, 1149–1156 (1984)

    Article  Google Scholar 

  15. K. Chen, Z. Lu, X. Chen, N. Ai, X. Huang, X. Du, W. Su, Development of LSM-based cathodes for solid oxide fuel cells based on YSZ films. J. Power Sources 172(2), 742–748 (2007)

    Article  CAS  Google Scholar 

  16. L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3. Solid State Ion. 76(3–4), 259–271 (1995)

    Article  CAS  Google Scholar 

  17. L.-W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 2. The system La1−xSrxCo0.2Fe0.8O3. Solid State Ion. 76(3–4), 273–283 (1995)

    Article  CAS  Google Scholar 

  18. C. Xia, W. Rauch, F. Chen, M. Liu, Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ion. 149(1–2), 11–19 (2002)

    Article  CAS  Google Scholar 

  19. C.H. Kim, G. Qi, K. Dahlberg, W. Li, Strontium-doped perovskites rival platinum catalysts for treating NOx in simulated diesel exhaust. Science 327(5973), 1624–1627 (2010)

    Article  CAS  Google Scholar 

  20. S. Seema, M.V.N. AmbikaPrasad, Dielectric spectroscopy of nanostructured polypyrrole-NiO composites. J. Polym. 950304, 5 (2014)

    Google Scholar 

  21. H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 16, 578–580 (1977)

    Article  Google Scholar 

  22. A.J. Heeger, The fourth generation of polymeric materials semiconducting and metallic polymers. Rev. Mod. Phys. 73(3), 681–700 (2001)

    Article  CAS  Google Scholar 

  23. A. Kassim, H.N.M.E. Mahmud, F. Adzmi, Polypyrrole montmorillonite clay composites: an organic semiconductor. Mater. Sci. Semicond. Process. 10(6), 246–251 (2007)

    Article  CAS  Google Scholar 

  24. A.G.B. da Cruz, J.L. Wardell, A.M. Rocco, A novel material obtained by electro polymerization of polypyrrole doped with [Sn(dmit)3]2-,[tris(1,3-dithiole-2-thione-4,5-dithiolato)-stannate]2. Synth. Met. 156(5–6), 396–404 (2006)

    Article  CAS  Google Scholar 

  25. C. Zener, Interaction between the d shells in the transition metals. Phys. Rev. 81, 440 (1951)

    Article  CAS  Google Scholar 

  26. P. Papazoglou, E. Eleftheriou, V.T. Zaspalis, Low sintering temperature MnZn-ferrites for power applications in the frequency region of 400 kHz. J. Magn. Magn. Mater. 296(1), 25–31 (2006)

    Article  CAS  Google Scholar 

  27. S.S. Shinde, J.A. Kher, M.V. Kulkarni, Synthesis, characterization and electrical property of silver doped polypyrrole nanocomposites. J. Innov. Res. Sci. Eng. Technol. 3, 2319–8753 (2014)

    Google Scholar 

  28. J.B. Goodenough, Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Phys. Rev. 100, 564 (1955)

    Article  CAS  Google Scholar 

  29. S.K. Singh, S.B. Palmer, D. Mck Paul, M.R. Lees, Growth, transport, and magnetic properties of Pr0.67Ca0.33MnO3 thin films. Appl. Phys. Lett. 69, 263 (1996)

    Article  CAS  Google Scholar 

  30. R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Giant negative magneto resistance in perovskite like La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 71, 2331–2333 (1993)

    Article  Google Scholar 

  31. C. Liao, M. Zhang, M.Y. Yao, T. Hua, L. Li, F. Yan, Flexible organic electronics in biology: materials and devices. Adv. Mater. 27, 7493–7527 (2015)

    Article  CAS  Google Scholar 

  32. X. Strakosas, M. Bongo, R.M. Owens, The organic electrochemical transistor for biological applications. J. Appl. Polym. Sci. 132, 41735 (2015)

    Article  CAS  Google Scholar 

  33. A. Tixier-Mita, S. Ihida, B.D. Ségard, G.A. Cathcart, T. Takahashi, H. Fujita, H. Toshiyoshi, Review on thin-film transistor technology, its applications, and possible new applications to biological cells. Jpn. J. Appl. Phys. 55, 04EA08 (2016)

    Article  Google Scholar 

  34. J. Rivnay, S. Inal, A. Salleo, R.M. Owens, M. Berggren, G.G. Malliaras, Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018)

    Article  CAS  Google Scholar 

  35. J.K. Furdyna, Diluted magnetic semiconductors. J. Appl. Phys. 64, R29 (1988). https://doi.org/10.1063/1.341700

    Article  CAS  Google Scholar 

  36. H. Ohno, Making nonmagnetic semiconductors ferromagnetic. Science 281, 951 (1998). https://doi.org/10.1126/science.281.5379.951

    Article  CAS  Google Scholar 

  37. M. Phan, S. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 310–325 (2007)

    Article  CAS  Google Scholar 

  38. S. Kazim, S. Ahmad, J. Pfleger, J. Plestil, Y.M. Joshi, Polyaniline–sodium montmorillonite clay nanocomposites: effect of clay concentration on thermal, structural, and electrical properties. J. Mater. Sci. 47, 420–428 (2012)

    Article  CAS  Google Scholar 

  39. E.L. Wolf, Nanophysics and Nanotechnology (Wiley, Weinheim, 2004)

    Google Scholar 

  40. M. G. Smitha, M. V. Murugendrappa, Transport and complex modulus study of La0.7Ca0.3MnO3 perovskite manganite nano-compound with polypyrrole as host. Polym. Bull. 1–18 (2018)

  41. W. Cherif, M. Ellouze, F. Elhalouani, A.-F. Lehlooh, Synthesis and characterization of fine particles of La0.7Ca0.3MnO3 prepared by the mechanical ball milling method. Eur. Phys. J. Plus 73, 127 (2012)

    Google Scholar 

  42. H. Taguchi, D. Matsuda, M. Nagano, K. Tanihata, Y. Miyamoto, Synthesis of perovskite‐type (La1−xSrx) MnO3 (O X 0.3) at low temperature. J. Am. Ceram. Soc. 75, 201 (1992)

    Article  CAS  Google Scholar 

  43. M. Ramezani, S.M. Hosseinpour-Mashkani, Controlled synthesis, characterization, and photocatalytic application of Co2TiO4 nanoparticles. J. Electron. Mater. 46(2), 1371–1377 (2017)

    Article  CAS  Google Scholar 

  44. M. Ramezani, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkan, Synthesis, characterization, and morphological control of Na1/2Bi1/2Cu3Ti4O12 through modify sol–gel method. J. Mater. Sci. 26(7), 4848–4853 (2015)

    CAS  Google Scholar 

  45. S.M. Hosseinpour-Mashkani, M. Ramezani, A. Sobhani-Nasab, M. Esmaeili-Zare, Synthesis, characterization, and morphological control of CaCu3Ti4O12 through modify sol–gel method. J. Mater. Sci. 26(8), 6086–6091 (2015)

    CAS  Google Scholar 

  46. M.V. Murugendrappa, M.V.N. AmbikaPrasad, Chemical synthesis, characterization, and direct-current conductivity studies of polypyrrole/γ-Fe2O3 composites. J. Appl. Polym. Sci. 103, 2797–2801 (2007)

    Article  CAS  Google Scholar 

  47. H. Eisazadeh, Studying the characteristics of polypyr-role and its composites. World J. Chem. 2(2), 67–74 (2007)

    Google Scholar 

  48. B. Kurniawan, S. Winarsih, C. Kurniawan, M. R. Ramadhan, and F. Ruli, The effect of Ca-doping on structure and microstructure of La0.7(Ba1-xCax)0.3MnO3. In: AIP Conference Proceedings 1862, 030054. https://doi.org/10.1063/1.4991158 (2017)

  49. A.S. Priya, I.B. ShameemBanu, S. Anwar, Investigation of multiferroic properties of doped BiFeO3–BaTiO3 composite ceramics. Mater. Lett. 142(1), 42–44 (2015)

    Article  CAS  Google Scholar 

  50. X.W. Wang, X.E. Wang, Y.P. Liu, Y.Y. Kong, L.Y. Sun, Y.C. Hu, Q.Q. Zhu, Hydrothermal process fabrication of NiO–NiCoO2–Co3O4 composites used as super capacitor materials. J. Mater. Sci. 28(20), 14928–14934 (2017)

    CAS  Google Scholar 

  51. M. Valian, F. Beshkar, M. Salavati-Niasari, ‘Novel preparation of ultrafine MnCo1.75Fe0.25O4 nanostructures for the photodegradation of Acid Red 88. J. Mater. Sci. 20, 14996–15003 (2017)

    Google Scholar 

  52. B.V. Chaluvaraju, K. Ganiger Sangappa, M.V. Murugendrappa, Thermo-electric power study of polypyrrole/molybdenum trioxide composites. Polym. Sci. A 57(4), 467–472 (2015)

    Article  CAS  Google Scholar 

  53. N. Kumar, N. Bastola, S. Kumar, R. Ranjan, Relaxor dielectric behavior in BaTiO3 substituted BiFeO3–PbTiO3 multiferroic system. J. Mater. Sci. 28(14), 10420–10426 (2017)

    CAS  Google Scholar 

  54. T. Dhandayuthapani, R. Sivakumar, R. Ilangovan, Facile synthesis of blue anatase TiO2 films by solvent evaporation method. J. Mater. Sci. 20, 15074–15080 (2017)

    Google Scholar 

  55. A.S. Hassanien, A.A. Akl, A.H. Sáaedi, Synthesis, crystallography, microstructure, crystal defects, and morphology of BixZn1−xO nanoparticles prepared by sol–gel technique. Cryst. Eng. Commun. 20, 1716–1730 (2018)

    Article  CAS  Google Scholar 

  56. A.S. Hassanien, A.A. Akl, Influence of thermal and compositional variations on conduction mechanisms and localized state density of amorphous Cd50S50−xSex thin films. J. Non-Cryst. Solids 487(1), 28–36 (2018)

    Article  CAS  Google Scholar 

  57. A.S. Hassanien, A.A. Akl, Electrical transport properties and Mott’s parameters of chalcogenide cadmium sulphoselenide bulk glasses. J. Non-Cryst. Solids 432, 471–479 (2016)

    Article  CAS  Google Scholar 

  58. V.S. ReddyChannu, R. Holze, Synthesis and characterization of a polyaniline-modified SnO2 nano composite. Ionics 18, 495–500 (2012)

    Article  CAS  Google Scholar 

  59. V. Efremov, J. van den Brink, D.I. Khomskii, Bond-versus site-centred ordering and possible ferroelectricity in manganites. Nat. Mater. 3(12), 853 (2004)

    Article  CAS  Google Scholar 

  60. S.R. Elliott, Frequency-dependent conductivity in ionically and electronically conducting amorphous solids. Solid State Ion. 70–71(1), 27–40 (1994)

    Article  Google Scholar 

  61. W.K. Lee, J.F. Liu, A.S. Nowick, Limiting behavior of ac conductivity in ionically conducting crystals and glasses: a new universality. Phys. Rev. Lett. 67, 1559 (1994)

    Article  Google Scholar 

  62. V.B. Aaditya, B.M. Bharathesh, R. Harshitha, B.V. Chaluvaraju, U.P. Raghavendr, M.V. Murugendrappa, Study of dielectric properties of polypyrrole/titanium dioxide and polypyrrole/titanium dioxide-MWCNT nano composites. J. Mater. Sci. 4, 2848–2859 (2018)

    Google Scholar 

  63. H.M. El-Mallah, AC electrical conductivity and dielectric properties of perovskite (Pb, Ca) TiO3 ceramic. Acta Phys. Pol. A 122(1), 174 (2012)

    Article  CAS  Google Scholar 

  64. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977)

    Article  CAS  Google Scholar 

  65. S. Bhavani, M. Ravi, Y. Pavani, V. Raja, R.S. Karthikeya, V.V.R.N. Rao, Studies on structural, electrical and dielectric properties of nickel ion conducting polyvinyl alcohol based polymer electrolyte films. J. Mater. Sci. 28(18), 13344–13349 (2017)

    CAS  Google Scholar 

  66. B. Roling, Scaling properties of the conductivity spectra of glasses and super cooled melts. Solid State Ion. 105(4), 185–193 (1998)

    Article  CAS  Google Scholar 

  67. J. Liu, Dielectric permittivity and electric modulus in Bi2Ti4O11. J. Chem. Phys. 119, 2812 (2003)

    Article  CAS  Google Scholar 

  68. R. Gopalakrishnan, B.V.R. Chowdari, K.L. Tan, Electrical and structural characterization of the xCuO:(1 − x)V2O5. Solid State Ion. 53–56, 1168–1171 (1992)

    Article  Google Scholar 

  69. N. Sdiri, B. Chem, E. Dhahri, Optical investigations of La0.7Ca0.3−xKxMnO3 (x = 0.00, 0.05 and 0.10) probed by spectroscopic ellipsometry. Ceramics 56(2), 95–101 (2012)

    CAS  Google Scholar 

  70. A.O. Turky, M. Rashad, A.M. Hassan, E.M. Elnaggar, M. Bechelany, Tailoring optical, magnetic and electric behavior of lanthanum strontium manganite La1−xSrxMnO3(LSM) nano powders prepared via a co-precipitation method with different Sr2+ ion contents. RSC Adv 6, 17980–17986 (2016)

    Article  CAS  Google Scholar 

  71. P.S. Das, P.K. Chakraborty, B. Behera, R.N. Choudhary, Electrical properties of Li2BiV5O15 ceramics. Physica B 395, 98–103 (2007)

    Article  CAS  Google Scholar 

  72. M. Belal Hossen, A.K.M. Akther Hossain, Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4. J. Adv. Ceram. 4(3), 217–225 (2015)

    Article  CAS  Google Scholar 

  73. A. Kumar, B.P. Singh, R.N.P. Choudhary et al., Characterization of electrical properties of Pb-modified BaSnO3 using impedance spectroscopy. Mater. Chem. Phys. 99, 150–159 (2006)

    Article  CAS  Google Scholar 

  74. B. Behera, P. Nayak, R.N.P. Choudhary, Impedance spectroscopy study of NaBa2V5O15 ceramic. J. Alloys Compd. 436, 226–232 (2007)

    Article  CAS  Google Scholar 

  75. J. Płcharski, W. Weiczorek, PEO based composite solid electrolyte containing nasicon. Solid State Ion. 28–30, 979–982 (1988)

    Article  Google Scholar 

  76. A. Pelaiz-Barranco, M.P. Gutierrez-Amador, A. Huanosta, R. Valenzuela, Phase transitions in ferrimagnetic and ferroelectric ceramics by ac measurements. Appl. Phys. Lett. 73, 2039–2041 (1998)

    Article  CAS  Google Scholar 

  77. M.H. Abdullah, A.N. Yusoff, Complex impedance and dielectric properties of an Mg–Zn ferrite. J. Alloys Compd. 233(39), 129–135 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Author is thankful to The Principal, BMS College of Engineering, Bangalore for the cooperation and providing the necessary facility. The Author is indebted to The Principal, RNS Institute of Technology, Bangalore for his cooperation. The Author also thank World Bank funded project Centre of Excellence on Advanced Materials Research under TEQIP 1.2.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Smitha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smitha, M.G., Murugendrappa, M.V. Effect of barium lanthanum manganite nano particle on the electric transport properties of polypyrrole at room temperature. J Mater Sci: Mater Electron 30, 10776–10791 (2019). https://doi.org/10.1007/s10854-019-01421-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01421-x

Navigation