Skip to main content

Advertisement

Log in

Studies of thermo-electric power and dielectric modulus of polypyrrole/zirconium oxide-molybdenum trioxide (PZM) composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zirconium oxide-molybdenum trioxide doped polypyrrole composites have been synthesized in the presence of ammonium persulphate (oxidizing agent), with different 15, 30, 45 and 60 wt% of zirconium oxide-molybdenum trioxide (ZM) in pyrrole, by the chemical polymerization (oxidation) process. The polypyrrole/zirconium oxide-molybdenum trioxide (PZM) composites have exhibited crystalline nature, which has been confirmed by powder X-ray diffraction patterns. The Fourier transform infrared graphs show that the stretching frequencies of the composites have shifted towards the lower frequency side. The scanning electron microscopy micrographs indicate that the composites are of spherical nature and form elongated chains; an increase in the particles size when compared with polypyrrole and ZM particles is also observed. Thermo electric power and transport properties studies reveal that there is an interaction between polypyrrole and the ZM particles and the weight percents of the ZM particles have an influence on the properties of the pure polypyrrole. Studies shown that, the PZM composites are good materials in conductivity, dielectric properties, micro power generator, thermo cooling, as semiconductors as well as may be in humidity, gas and thermal sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Inzelt, J. Solid State Electrochem. 15, 1711–1718 (2011)

    Article  Google Scholar 

  2. H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, J. Chem. Soc. Chem. Commun. 578–580 (1977)

  3. S. Ramakrishnan, Resonance (Vol. 2, No. 11, 1997), pp. 48–58

  4. T. Miura, R. Tao, S. Shibata, T. Umeyama, T. Tachikawa, H. Imahori, Y. Kobori, J. Am. Chem. Soc. 138, 5879–5885 (2016)

    Article  Google Scholar 

  5. K.R. Reddy, K.V. Karthik, S.B. Benaka Prasad, S.K. Soni, H.M. Jeong, A.V. Raghu, Polyhedron 120, 169–174 (2016)

    Article  Google Scholar 

  6. K.R. Reddy, K.-P. Lee, A.I. Gopalan, J. Nanosci. Nanotech. 7, 3117–3125 (2007)

    Article  Google Scholar 

  7. Y.-P. Zhang, S.-H. Lee, K.R. Reddy, A.I. Gopalan, K.-P. Le, J. Appl. Polym. Sci. 104, 2743–2750 (2007)

    Article  Google Scholar 

  8. K.R. Reddy, K.-P. Lee, A.I. Gopalan, J. Appl. Polym. Sci. 106, 1181–1191 (2007)

    Article  Google Scholar 

  9. K.R. Reddy, K.-P. Lee, A.I. Gopalan, A.M. Showkat, Polym. J. 38, 349–354 (2006)

    Article  Google Scholar 

  10. K.R. Reddy, K.-P. Lee, Y. Lee, A.I. Gopalan, J. Colloid Interface Sci. 335, 34–39 (2009)

    Article  Google Scholar 

  11. M. Hassan, K.R. Reddy, E. Haque, S.N. Faisal, S. Ghasemi, A.I. Minett, V.G. Gomes, Compos. Sci. Tech. 98, 1–8 (2014)

    Article  Google Scholar 

  12. K.K. Reddy, R.H.M. Jeong, Y. Lee, A.V. Raghu, J. Polym. Sci. Polym. Chem. Part A 48, 1477–1484 (2010)

    Article  Google Scholar 

  13. A.K. Bakhshi, Bull. Mater. Sci. 18(5), 469–495 (1995)

    Article  Google Scholar 

  14. M. Fatih Koleli, Y. Dudukcu, Arslan, Turkish J. Chem. 24, 333–341 (2000)

    Google Scholar 

  15. M. Angelopoulos, IBM J. Res. Dev. 45(1), 57–75 (2001)

    Article  Google Scholar 

  16. A.J. Heeger, Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials, Nobel Lecture, 8th (2000)

  17. T.P. Radhakrishnan, Resonance, 62–70 (2001)

  18. T.V. Vernitskaya, O.N. Efimov, Russ. Chem. Rev. 66(5), 443–457 (1997)

    Article  Google Scholar 

  19. E. Buhks, I.M. Hodge, J. Chem. Phys. 83(11), 5976–5980 (1985)

    Article  Google Scholar 

  20. T.A. Skotheim ed. Handbook of Conducting Polymers, Vols. 1–2,. (Marcel Dekker, New York, 1986)

    Google Scholar 

  21. K.C. Sajjan, A.S. Roy, A. Parveen, S. Khasim, J. Mater. Sci.: Mater. Electron. 25, 1237–1243 (2014)

    Google Scholar 

  22. T. Machappa, M.V.N. Ambika Prasad, Bull. Mater. Sci. 35(1), 75–81 (2012)

    Article  Google Scholar 

  23. N. Parvathikar, S. Jain, S. Khasim, M. Revansiddappa, S.V. Bhoraskar, M.V.N. Ambika Prasad, Sens. Actuators. B 114, 599–603 (2006)

    Article  Google Scholar 

  24. B.V. Chaluvaraju, S.K. Ganiger, M.V. Murugendrappa, I.J. Resea, Pure Appl. Phys. 5(1), 13–18 (2015)

    Google Scholar 

  25. I.A. Salem, R.I. Elhag, K.M.S. Khalil, Trans. Met. Chem. 25, 260–264 (2000)

    Article  Google Scholar 

  26. A. Afzal, Mater. Express. 4(1), 1–12 (2014)

    Article  Google Scholar 

  27. B.V. Chaluvaraju, S.K. Ganiger, M.V. Murugendrappa, Polym. Sci. Ser. B 56(6), 935–939 (2014)

    Article  Google Scholar 

  28. F.F. Ferreira, T.G.S. Cruz, M.C.A. Fantini, M.H. Tabacniks, S.C. de Castro, J. Morais, A. de Siervo, R. Landers, Solid State Ionics 357, 136 (2000)

    Google Scholar 

  29. C. Zollfrank, K. Gutbrod, P. Wechsler, J.P. Guggenbichler, Mater. Sci. Eng. C 32, 47 (2012)

    Article  Google Scholar 

  30. B.V. Chaluvaraju, S K. Ganiger, M.V. Murugendrappa. Polym. Sci. Ser. B 56(6), 935–939 (2014)

    Article  Google Scholar 

  31. B.V. Chaluvaraju, S.K. Ganiger, M.V. Murugendrappa, IJLTEMAS, III(V), 33–36 (2014)

    Google Scholar 

  32. H. Wang, L. Wang, R. Wang, X. Tian, K. Zheng, Colloid. Polym. Sci. 291, 1001–1007 (2013)

    Article  Google Scholar 

  33. C. Basavaraja, Y. Veeranagouda, K. Lee, T.K. Vishnuvardhan, R. Pierson, D.S. Huh, J. Polym. Res. 17, 233–239 (2010)

    Article  Google Scholar 

  34. S.K. Ganiger, B.V. Chaluvaraju, M.V. Murugendrappa, International JIRSET, 4(7), 5819–5827 (2015)

    Google Scholar 

  35. B.V. Chaluvaraju, U.P. Raghavendra, T.S. Pranesha, M.V. Murugendrappa, J. Mater. Sci.: Mater. Electron. 28, 11230–11242 (2017)

    Google Scholar 

  36. D.M. Jundale, S.T. Navale, G.D. Khuspe, D.S. Dalavi, P.S. Patil, V.B. Patil, J. Mater. Sci.: Mater. Electron. 24, 3526–3535 (2013)

    Google Scholar 

  37. D.S. Madddison, J. Unsworth, Synth. Metals. 26, 99–108 (1988)

    Article  Google Scholar 

  38. C. Han, Z. Li, S. Dou, Chin. Sci. Bull. 59(18), 2073–2091 (2014)

    Article  Google Scholar 

  39. L.E. Bell, Science 321, 1457–1461 (2008)

    Article  Google Scholar 

  40. A. Shakouri, M. Zebarjadi, S. Volz eds. Thermal Nanosystems and Nanomaterials, (Springer, Heidelberg, 2009)

    Google Scholar 

  41. D. Kraemer, B. Poudel, H.P. Feng, Nat. Mater. 10, 532–538 (2011)

    Article  Google Scholar 

  42. A.F. Loffe, Physics of Semiconductors. (Academic Press, New York, 1960)

    Google Scholar 

  43. A. Majumdar, Science 303, 777–778 (2004)

    Article  Google Scholar 

  44. P. Pichanusakorn Bandaru, Mater. Sci. Eng. 67, 19–63 (2010)

    Article  Google Scholar 

  45. A. Shakouri, Ann. Rev. Mater. Res. 41, 399–431 (2011)

    Article  Google Scholar 

  46. N. Dubey, M. Leclerc, J. Polym. Sci. B: Polym. Phys. 49, 467–475 (2011)

    Article  Google Scholar 

  47. J.L. Njoroge, Mater. Res. Bull. 35, 909–910 (2010)

    Article  Google Scholar 

  48. M. He, F. Qiu, Z.Q. Lin, Energy Environ. Sci. 6, 1352–1361 (2013)

    Article  Google Scholar 

  49. J. Harreld, H.P. Wong, B.C. Dave, B. Dunn, L.F. Nazar, J. Non-Cryst. Solids. 225, 319–324 (1998)

    Article  Google Scholar 

  50. S. Kazim, S. Ahmad, J. Pfleger, J. Plestil, Y.M. Joshi, J. Mater. Sci. 47, 420–428 (2012)

    Article  Google Scholar 

  51. M.V. Murugendrappa, M.V.N. Ambika Prasad, J. Appl. Polym. Sci. 103, 2797–2801 (2007)

    Article  Google Scholar 

  52. V.S. Reddy Channu, R. Holze, Ionics 18, 495–500 (2012)

    Article  Google Scholar 

  53. S. Sarmah, A. Kumar, Indian J. Phys. 85(5), 713–726 (2011)

    Article  Google Scholar 

  54. M. Dahlhaus, F. Beck, J. Appl. Electrochem. 23, 957–965 (1993)

    Article  Google Scholar 

  55. Z. Huang, S. Wang, H. Li, S. Zhang, Z. Tan, J. Therm. Anal. Calorim. 115, 259–266 (2014)

    Article  Google Scholar 

  56. A. Rherari, M. Addou, M. Haris, J. Mater. Sci.: Mater. Electron. 28(21), 15762–15767 (2017)

    Google Scholar 

  57. V. Jadkar, A. Pawbake, R. Waykar, A. Jadhavar, J. Mater. Sci.: Mater. Electron. 28(21), 15790–15796 (2017)

    Google Scholar 

  58. W.B. Soltan, M.S. Lassoued, S. Ammar, T. Toupance, J. Mater. Sci.: Mater. Electron. 28(21), 15826–15834 (2017)

    Google Scholar 

  59. P.L. Deepti, S.K. Patri, R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. 28(21), 16071–16076 (2017)

    Google Scholar 

  60. J. Hou, G. Zhu, J. Zheng, Polym. Sci.: Ser. B 53(9–10), 546–552 (2011)

    Google Scholar 

  61. Z. Shen, D. Li, J. Mater. Sci.: Mater. Electron. 28(18), 13257–13266 (2017)

    Google Scholar 

  62. M. Jose, M. Elakiya, S.A. Martin Britto Dhas, J. Mater. Sci.: Mater. Electron. 28(18), 13649–13658 (2017)

    Google Scholar 

  63. B.V. Chaluvaraju, K. Sangappa, S.K. Ganiger, M.V. Murugendrappa, Polym. Sci.: Ser. B 56(6), 935–939 (2014)

    Google Scholar 

  64. O.G. Abdullah, R.R. Hanna, Y.A.K. Salman, J. Mater. Sci.: Mater. Electron. 28(14), 10283–10294 (2017)

    Google Scholar 

  65. Y. Suiyan Ma, L.X. Shi, M. Zhao, D. Liu, J. Mater. Sci.: Mater. Electron. 28(21), 15154–15160 (2017)

    Google Scholar 

  66. B.K. Das, T. Das, K. Parashar, A. Thirumurugan, S.K.S. Parashar, J. Mater. Sci.: Mater. Electron. 28(20), 15127–15134 (2017)

    Google Scholar 

  67. B. Singh, A. Thakur, M. Kumar, S.K. Verma, D. Jasrotia, J. Mater. Sci.: Mater. Electron. 28(14), 10007–10011 (2017)

    Google Scholar 

  68. Y. Yuan, Y. Qian, H. Han, Y. Chen, J. Mater. Sci.: Mater. Electron. 28(14), 10028–10034 (2017)

    Google Scholar 

  69. B. Mohanbabu, R. Bharathikannan, G. Siva, J. Mater. Sci.: Mater. Electron. 28(18), 13740–13749 (2017)

    Google Scholar 

  70. K. Mohammadi, M. Sadeghi, R. Azimirad, J. Mater. Sci.: Mater. Electron. 28(14), 10042–10047 (2017)

    Google Scholar 

  71. F. Namvar, F. Beshkar, M. Salavati-Niasari, S. Bagheri, J. Mater. Sci.: Mater. Electron. 28(14), 10313–10320 (2017)

    Google Scholar 

  72. Y.Y. Wang, K.F. Cai, J.L. Yin, B.J. An, Y. Du, X. Yao, J. Nanoparticle Res. 13, 533–539 (2011)

    Article  Google Scholar 

  73. Q. Tang, X. Sun, Q. Li, J. Lin, J. Wu, J. Mater. Sci. 44, 849–854 (2009)

    Article  Google Scholar 

  74. T.J. Kang, S. Miyata, Y. Miyaki, Polym. Bull. 31, 593–599 (1993)

    Article  Google Scholar 

  75. J.H. Chen, Z.P. Huang, D.Z. Wang, S.X. Yang, J.G. Wen, Z.F. Ren, Appl. Phys. A 73, 129–131 (2001)

    Article  Google Scholar 

  76. H. Eisazadeh, World J. Chem. 2(2), 67–74 (2007)

    Google Scholar 

  77. M.P. Dash, P.L. Nayak, Int. J. Plast. Tech. 14(2), 142–151 (2010)

    Article  Google Scholar 

  78. R. Turcu, M. Brie, G. Leising, V. Tosa, A. Mihut, A. Niko, A. Bot, Appl. Phys. A 67, 283–287 (1998)

    Article  Google Scholar 

  79. S. Geetha, D.C. Trivedi, J. Mater. Sci.: Mater. Electron. 16,, 329–333 (2005)

    Google Scholar 

  80. M.M. Abdia, H.N.M. Ekramul Mahmudb, A. Kassima, W.M.M. Yunusc, Z.A. Talibc, M.J. Harona, Polym. Sci. 52(11–12), 662–669 (2010)

    Google Scholar 

  81. H.-R. Yin, J.-S. Jiang, J. Mater. Sci. 40, 3013–3015 (2005)

    Article  Google Scholar 

  82. N. Srivastava, Y. Singh, R.A. Singh, Bull. Mater. Sci. 34(4), 635–638 (2011)

    Article  Google Scholar 

  83. A. Skotheim, J.R. Reynolds, Conjugated Polymers: Theory, Synthesis, Properties and Characterization, Handbook of Conducting Polymers, 3rd edn (CRC Press, Taylor and Francis Group, Boca Raton, 2007)

    Google Scholar 

  84. T. Dhandayuthapani, R. Sivakumar, R. Ilangovan, J. Mater. Sci. 28(20), 15074–15080 (2017)

    Google Scholar 

  85. B.V. Chaluvaraju, S.K. Ganiger, M.V. Murugendrappa, Polym. Sci. 57(4), 467–472 (2015)

    Google Scholar 

  86. T. Uma, H.Y. Tu, S. Warth, D. Schneider, D. Freude, U. Stimming, J. Mater. Sci. 40, 2059–2063 (2005)

    Article  Google Scholar 

  87. S.K. Ganiger, B.V. Chaluvaraju, K.S. Ganiger, M.V. Murugendrappa, Malays. Polym. J. 10(1), 9–15 (2015)

    Google Scholar 

  88. P. Dutta, S. Biswas, M. Ghosh, S.K. De, S. Chatterjee, Synth. Met. 122, 455–461 (2000)

    Article  Google Scholar 

  89. H.P. de Oliveira, M.V.B. dos Santos, C.G. dos Santos, C.P. de Melo, Synth. Met. 135–136, 447–448 (2003)

    Article  Google Scholar 

  90. H. Narayan, A.M. Montano, M.L. Hernandez, J.A. Hernandez, C.P. Gonzalez, C.A. Ortiz, J. Mater. Environ. Sci. 3(1), 137–148 (2012)

    Google Scholar 

  91. T.K. Vishnuvardhan, V.R. Kulkarni, C. Basavaraja, S.C. Raghavendra, Bull. Mater. Sci. 29(1), 77–83 (2006)

    Article  Google Scholar 

  92. N. Kumar, N. Bastola, S. Kumar, R. Ranjan, J. Mater. Sci. 28(14), 10420–10426 (2017)

    Google Scholar 

  93. S. Bhavani, M. Ravi, Y. Pavani, V. Raja, R.S. Karthikeya, V.V.R.N. Rao, J. Mater. Sci. 28(18), 13344–13349 (2017)

    Google Scholar 

  94. Q. Chi, Z. Gao, C. Zhang, Y. Cui, J. Mater. Sci. 28(20), 15142–15148 (2017)

    Google Scholar 

  95. K. Prompa, E. Swatsitang, T. Putjuso, J. Mater. Sci. 28(20), 15033–15042 (2017)

    Google Scholar 

  96. S. Halder, K. Parida, S.N. Das, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci. 28(21), 631–637 (2017)

    Google Scholar 

  97. K. Sangappa, B. Ganiger, V. Chaluvaraju, M.V. Murugendrappa, IJIRSET 3(6), 13934–13946 (2014)

    Google Scholar 

  98. Y.D. Kim, G.G. Hong, Korean J. Chem. Eng. 29(7), 964–968 (2012)

    Article  Google Scholar 

  99. T.Z. Abdul Shakoor, M. Rizvi, Saeed, Polym. Sci. 54(5), 401–406 (2012)

    Google Scholar 

  100. Y.D. Kim, J.H. Kim, Colloidal Polym. Sci. 286, 631–637 (2008)

    Article  Google Scholar 

  101. M.H. Harun, E. Saion, A. Kassim, E. Mahmud, M.Y. Hussain, I.S. Mustafa, J. Adv. Sci. Arts 1, 9–16 (2009)

    Google Scholar 

  102. P. Tsotra, K. Friedrich, J. Mater. Sci. 40, 4415–4421 (2005)

    Article  Google Scholar 

  103. M. Lakshmi, A. Roy, S. Khasim, M. Faisal, K.C. Sajjan, M. Revanasiddappa, AIP Adv. 3, 112113–112118 (2013)

    Article  Google Scholar 

  104. V.B. Aaditya, B.M. Bharatesh, R. Harshitha, B.V. Chaluvaraju, U.P. Raghavendra, M.V. Murugendrappa, J. Mater. Sci. (2017). https://doi.org/10.1007/s10854-017-8214-6

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge The Principal, Dr. T.S. Pranesha, HOD, Dept. of Physics, BMSCE, Bangalore-560019 and Rajya Vokkaligara Sangha, BIT, Bangalore-560004 for their cooperation and assistance. The XRD and SEM analyses for the samples were done at STIC-SAIF, Cochin University of Technology, Cochin, India. The authors thank Dr. Chitra Shankar for smoothen and review the paper. The Center of Excellence in Advanced Materials Research, BMS College of Engineering is supported by the Technical Education Quality Improvement Program (TEQIP) of the World Bank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Chaluvaraju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harshitha, R., Aaditya, V.B., Bharathesh, B.M. et al. Studies of thermo-electric power and dielectric modulus of polypyrrole/zirconium oxide-molybdenum trioxide (PZM) composites. J Mater Sci: Mater Electron 29, 6564–6578 (2018). https://doi.org/10.1007/s10854-018-8640-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8640-0

Navigation