Skip to main content
Log in

Expression of a Pennisetum glaucum gene DREB2A confers enhanced heat, drought and salinity tolerance in transgenic Arabidopsis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Pearl millet (Pennisetum glaucum) is an essential cereal crop, whose growth and yield are not impacted by abiotic stresses, such as drought, heat, and cold. The DREB transcription factors (TF) are some of the largest groups of TFs in plants and play varied roles in plant stress response and signal transduction.

Methods and results

In the present study, PgDREB2A gene encoding a DREB transcription factor in pearl millet was functionally characterized in Arabidopsis. DREB2A proteins contain a conserved domain that binds toethylene responsive element binding factors. Three different T1 transgenic lines overexpressing PgDREB2A gene were identified by Southern blot. Quantitative real-time polymerase chain reaction exhibited that PgDREB2A could be induced under drought conditions. As compared with the control, PgDREB2A overexpressing transgenic Arabidopsis showed increased rate of seed germination and root growth in transgenic lines under higher concentrations of mannitol, NaCl, ABA, heat and cold stress. Additionally, PgDREB2A transgenic lines showed enhanced durability after rehydration and tolerance to drought and salt stress was augmented with increased proline and reduced MDA build-up and diminishing water loss.

Conclusions

Results from this study suggested that PgDREB2A as a transcription factor may improve endurance to various abiotic stresses and can be employed for developing crops tolerant to abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bidinger FR, Hash CT (2004) Pearl millet. In: Nguyen HT, Blum A (eds) Physiology and biotechnology integration for plant breeding. CRC Press, New York, pp 225–270

    Google Scholar 

  2. Ghatak A, Chaturvedi P, Bachmann G, Valledor L, Ramšak Ž, Bazargani MM, Bajaj P, Jegadeesan S, Li W, Sun X, Gruden K, Varshney RK, Weckwerth W (2021) Physiological and proteomic signatures reveal mechanisms of superior drought resilience in pearl millet compared to wheat. Front Plant Sci. https://doi.org/10.3389/fpls.2020.600278

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mabhaudhi T, Chimonyo VGP, Hlahla S, Massawe F, Mayes S, Nhamo L et al (2019) Prospects of orphan crops in climate change. Planta 250:695–708. https://doi.org/10.1007/s00425-019-03129-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. FAO (2014) FAOSTAT data in 2014. Available at: http://faostat3.fao.org

  5. Serba DD, Yadav RS (2016) Genomic tools in pearl millet breeding for drought tolerance: status and prospects. Front Plant Sci 7:1724. https://doi.org/10.3389/fpls.2016.01724

    Article  PubMed  PubMed Central  Google Scholar 

  6. Safriel U, Adeel Z, Niemeijer D, Puig de fabregas J, White R, Lal R, et al (2005) Dry land systems. In: Hassan R, Scholes R, Ash N (eds) Millennium ecosystem assessment: ecosystems and human well-being: current state and trends: findings of the condition and trends working group, vol 1. Island Press, Washington, pp 623–662

    Google Scholar 

  7. Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. CurrOpin Plant Biol 6:410–417

    CAS  Google Scholar 

  8. Denby K, Gehring C (2005) Engineering drought and salinity tolerance in plants: lessons from genome-wide expression profiling in Arabidopsis. Trends Plant Sci 23:547–552

    CAS  Google Scholar 

  9. Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10(12):621–630

    Article  CAS  PubMed  Google Scholar 

  10. Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res 97(1):111–119

    Article  Google Scholar 

  11. Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

    PubMed  PubMed Central  Google Scholar 

  12. Lee SJ, Kang JY, Park HJ, Kim MD, Bae MS, Choi HI, Kim SY (2010) DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity. Plant Physiol 153:716–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Plant Biol 9(2):189–195

    CAS  Google Scholar 

  14. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang W, Liu X, Chi X, Wu C, Li Y, Song L et al (2011) Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta 233:219–229. https://doi.org/10.1007/s00425-010-1279-6

    Article  CAS  PubMed  Google Scholar 

  16. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  17. Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to theC-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, Shinozaki K, Yamaguchi-Shinozaki K (2010) Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Genet Genom 283:185–196

    Article  CAS  Google Scholar 

  20. Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  CAS  PubMed  Google Scholar 

  21. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Os-DREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold responsive gene expression. Plant J 33:751–763

    Article  CAS  PubMed  Google Scholar 

  22. Bihani P, Char B, Bhargava S (2011) Transgenic expression of sorghum DREB2 in rice improves tolerance and yield under water limitation. J Agric Sci 149:95–101

    Article  CAS  Google Scholar 

  23. Mizoi J, Ohori T, Moriwaki T, Kidokoro S, Todaka D, Maruyama K, Kusakabe K, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2013) GmDREB2A; a canonical dehydration-responsive element-binding protein 2-type transcription factor in soybean, is post translationally regulated and mediates dehydration-responsive element-dependent gene expression. Plant Physiol 161:346–361

    Article  CAS  PubMed  Google Scholar 

  24. Hichri I, Muhovski Y, Clippe A, Žižková E, Dobrev PI, Motyka V, Lutts S (2016) SlDREB2, a tomato dehydration-responsive element- binding 2 transcription factor, mediates salt stress tolerance in tomato and Arabidopsis. Plant Cell Environ 39:62–79

    Article  CAS  PubMed  Google Scholar 

  25. Gupta K, Agarwal PK, Reddy MK, Jha B (2010) SbDREB2A, an A-2 type DREB transcription factor from extreme halophyte Salicornia brachiata confers abiotic stress tolerance in Escherichia coli. Plant Cell Rep 29:1131–1137

    Article  CAS  PubMed  Google Scholar 

  26. Li X, Zhang D, Li H, Wang Y, Zhang Y, Wood AJ (2014) EsDREB2B, a novel truncated DREB2-type transcription factor in the desert legume Eremosparton songoricum, enhances tolerance to multiple abiotic stresses in yeast and transgenic tobacco. BMC Plant Biol 14:44. https://doi.org/10.1186/1471-2229-14-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF (2001) Components of the Arabidopsis C-Repeat/ dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Navarro M, Marque G, Ayax C, Keller G, Borges JP, Marque C, Teulières C (2009) Complementary regulation of four Eucalyptus CBF genes under various cold conditions. J Exp Bot 60:2713–2724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBFtype transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  CAS  PubMed  Google Scholar 

  30. Choi DW, Rodriguez EM, Close TJ (2002) Barley Cbf3 gene identification, expression, pattern and map location. Plant Physiol 129:1781–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qin F, Sakuma Y, Li J, Liu Q, Li Y-Q, Shinozaki K, Yamaguchi-Shinozaki K (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45:1042–1052

    Article  CAS  PubMed  Google Scholar 

  32. Yang GY, Yu LL, Zhang KM, Zhao YL, Guo YC, Gao QA (2017) ThDREB gene from Tamarix hispida improved the salt and drought tolerance of transgenic tobacco and T. hispida. Plant Physiol Biochem 113:187–197

    Article  CAS  PubMed  Google Scholar 

  33. Wang XM, Dong J, Liu Y, Gao HW (2010) A novel dehydration-responsive element-binding protein from Caragana korshinskii is involved in the response to multiple abiotic stresses and enhances stress tolerance in transgenic tobacco. Plant Mol Biol Rep 28:664–675

    Article  CAS  Google Scholar 

  34. Varshney RK, Shi C, Thudi M, Mariac C, Wallace J, Qi P et al (2017) Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotech 35(10):969–976

    Article  CAS  Google Scholar 

  35. Agarwal P, Agarwal PK, Nair S, Sopory SK, Reddy MK (2007) Stress inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA binding activity. Mol Genet Genomics 277:189–198

    Article  CAS  PubMed  Google Scholar 

  36. Agarwal P, Agarwal PK, Joshi AJ, Sopory SK, Reddy MK (2010) Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol Biol Rep 37:1125–1135

    Article  CAS  PubMed  Google Scholar 

  37. Meena RP, Vishwakarma H, Padaria JC (2020) Isolation and in-silico studies on AP2/ERF domain containing gene DREB2A from pearl millet. Res J Biotech 15(5):99–108

    Google Scholar 

  38. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  39. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. https://doi.org/10.1046/j.1365-313x.1998.00343.x

    Article  CAS  PubMed  Google Scholar 

  40. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. CSHL Press, New York

    Google Scholar 

  41. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  42. Blum A, Ebercon A (1981) Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci 21(1):43–47

    Article  Google Scholar 

  43. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  44. Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57(12):1332–1334

    Article  CAS  Google Scholar 

  45. Smart RE, Bingham GE (1974) Rapid estimates of relative water content. Plant Physiol 53(2):258–260. https://doi.org/10.1104/pp.53.2.258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2–ΔΔCt method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  47. Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62(14):4731–4748

    Article  CAS  PubMed  Google Scholar 

  48. Wei B, Jing R, Wang C, Chen J, Mao X, Chang X, Jia Z (2009) Dreb1 genes in wheat (Triticum aestivum L.), development of functional markers and gene mapping based on SNPs. Mol Breed 23:13–22

    Article  CAS  Google Scholar 

  49. Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pandey P, Achary VM, Kalasamudramu V, Mahanty S, Reddy GM, Reddy MK (2014) Molecular and biochemical characterization of dehydroascorbate reductase from a stress adapted C4 plant, pearl millet [Pennisetum glaucum (L.) R. Br]. Plant Cell Rep 33(3):435–445

    Article  CAS  PubMed  Google Scholar 

  51. Mishra RC, Richa SA, Tiwari LD, Grover A (2016) Characterization of 5’UTR of rice ClpB-C/Hsp100 gene: evidence of its involvement in post-transcriptional regulation. Cell Stress Chaperones 21(2):271–283. https://doi.org/10.1007/s12192-015-0657-1

    Article  CAS  PubMed  Google Scholar 

  52. Agarwal PK, Gupta K, Lopato S, Agarwal P (2017) Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance. J Exp Bot 68(9):2135–2148. https://doi.org/10.1093/jxb/erx118

    Article  CAS  PubMed  Google Scholar 

  53. Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170

    Article  PubMed  PubMed Central  Google Scholar 

  54. Patonnier MP, Peltier JP, Marigo G (1999) Drought-induced increase in xylem malate and mannitol concentration and closure of Fraxinus excelsior L. stomata. J Exp Bot 50:1223–1229

    Article  CAS  Google Scholar 

  55. Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259:508–510

    Article  CAS  PubMed  Google Scholar 

  56. Thomas JC, Sepahi M, Arendall B, Bohnert HJ (1995) Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Environ 18:801–806

    Article  CAS  Google Scholar 

  57. Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, von Koskull-Döring P (2008) A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J 53:264–274

    Article  CAS  PubMed  Google Scholar 

  58. Shen YG, Zhang WK, Yan DQ, Du BX, Zhang JS, Liu Q, Chen SY (2003) Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor Appl Genet 107:155–161

    Article  CAS  PubMed  Google Scholar 

  59. Hong JP, Kim WT (2005) Isolation and functional characterization of the Ca-DREBLP1gene encoding a dehydration-responsive element binding-factor-like protein 1 in hot pepper (Capsicum annuum L. cv Pukang). Planta 220:875–888

    Article  CAS  PubMed  Google Scholar 

  60. Li XP, Tian AG, Luo GZ, Gong ZZ, Zhang JS, Chen SY (2005) Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theor Appl Genet 110:1355–1362

    Article  CAS  PubMed  Google Scholar 

  61. Augustine SM, Ashwin Narayan J, Syamaladevi DP, Appunu C, Chakravarthi M, Ravichandran V, Tuteja N, Subramanian N (2015) Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Cell Rep 34:247–263

    Article  CAS  PubMed  Google Scholar 

  62. Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500

    Article  CAS  PubMed  Google Scholar 

  63. Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol 42:657–665

    Article  CAS  PubMed  Google Scholar 

  65. Chen JR, Lu JJ, Liu R, Xiong ZY, Wang TX, Chen SY, Guo LB, Wang HF (2010) DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China Rose (Rosa chinensis Jacq.). J Plant Growth Regul 60:199–211

    Article  CAS  Google Scholar 

  66. Liu L, Zhu K, Yang Y, Wu J, Chen F, Yu D (2008) Molecular cloning, expression profiling and trans-activation property studies of a DREB2-like gene from chrysanthemum (Dendranthema vestitum). J Plant Res 121:215–226

    Article  CAS  PubMed  Google Scholar 

  67. Baker SS, Wilhelm KS, Thomashow MF (1994) The 5’-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24:701–713

    Article  CAS  PubMed  Google Scholar 

  68. Agarwal PK, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plant 54:201–212

    Article  CAS  Google Scholar 

  69. Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shen Q, Zhang P, Ho TH (1996) Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8:1107–1119

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim JS, Mizoi J, Yoshida T et al (2011) An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant Cell Physiol 52:2136–2146

    Article  CAS  PubMed  Google Scholar 

  72. Abbad H, Jaafari SE, Bort J, Araus JL (2004) Comparison of flag leaf and ear photosynthesis with grain yield of durum wheat under various water conditions and genotypes. Agronomie 24:19–28

    Article  Google Scholar 

  73. Tsikas D (2017) Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal Biochem 524:13–30

    Article  CAS  PubMed  Google Scholar 

  74. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:153–188

    Article  Google Scholar 

  75. Wang C, Jing C, Mao X, Chang X, Li A (2011) TaABC1, a member of the activity of bc1 complex protein kinase family from common wheat, confers enhanced tolerance to abiotic stresses in Arabidopsis. J Exp Bot 62:1299–1311

    Article  CAS  PubMed  Google Scholar 

  76. Feller U (2016) Drought stress and carbon assimilation in a warming climate: reversible and irreversible impacts. J Plant Physiol 203:84–94

    Article  CAS  PubMed  Google Scholar 

  77. Verbruggen N, Hermanns C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    Article  CAS  PubMed  Google Scholar 

  78. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  79. Bhatnagar-Mathur P, Devi MJ, Reddy DS, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma KK (2007) Stress-inducible expression of AtDREB1A in transgenic peanut (Arachis hypogea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26:2071–2082

    Article  CAS  PubMed  Google Scholar 

  80. Cong L, Chai TY, Zhang YX (2008) Characterization of the novel gene BjDREB1B encoding a DRE-binding transcription factor from Brassica juncea L. Biochem Bioph Res Commun 371:702–706

    Article  CAS  Google Scholar 

  81. Zhao K, Shen X, Yuan H, Liu Y, Liao X, Wang Q, Liu L, Li F, Li T (2013) Isolation and characterization of dehydration-responsive element-binding factor 2C (MsDREB2C) from Malus sieversii Roem. Plant Cell Physiol 54(9):1415–1430. https://doi.org/10.1093/pcp/pct087

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Director, ICAR-NIPB, New Delhi, India for providing necessary facilities and funds. Director IARI, New Delhi, India is duly thanked for National Phytotron Facilities. Award of fellowship to the first author by PG School-IARI and Department of Biotechnology (DBT), Government of India is duly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

JCP conceptualized the experiments, interpreted the results and made the final draft. RPM conducted the experiments and interpreted the results. GG and HV supported in experiments, interpreted the results, statistical analysis of data obtained and prepared the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Jasdeep Chatrath Padaria.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, R.P., Ghosh, G., Vishwakarma, H. et al. Expression of a Pennisetum glaucum gene DREB2A confers enhanced heat, drought and salinity tolerance in transgenic Arabidopsis. Mol Biol Rep 49, 7347–7358 (2022). https://doi.org/10.1007/s11033-022-07527-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07527-6

Keywords

Navigation