Skip to main content
Log in

Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The DREB transcription factors comprise conserved ERF/AP2 DNA-binding domain, bind specifically to DRE/CRT motif and regulate abiotic stress mediated gene expression. In this study we show that PgDREB2A from Pennisetum glaucum is a powerful transcription factor to engineer multiple stress tolerance in tobacco plants. The PgDREB2A protein lacks any potential PEST sequence, which is known to act as a signal peptide for protein degradation. Therefore, the transgenic tobacco plants were raised using full-length cDNA without modification. The transgenics exhibited enhanced tolerance to both hyperionic and hyperosmotic stresses. At lower concentration of NaCl and mannitol, seed germination and seedling growth was similar in WT and transgenic, however at higher concentration germination in WT decreased significantly. D15 and D46 lines showed 4-fold higher germination percent at 200 mM NaCl. At 400 mM mannitol seed germination in WT was completely arrested, whereas in transgenic line it was more than 50%. Seedlings of D15 and D46 lines showed better growth like leaf area, root number, root length and fresh weight compared to wild type for both the stresses. The quantitative Real time PCR of transgenic showed higher expression of downstream genes NtERD10B, HSP70-3, Hsp18p, PLC3, AP2 domain TF, THT1, LTP1 and heat shock (NtHSF2) and pathogen-regulated (NtERF5) factors with different stress treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  2. Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    Article  CAS  PubMed  Google Scholar 

  3. Chen WQJ, Zhu T (2004) Networks of transcription factors with roles in environmental stress response. Trends Plant Sci 9:591–596

    Article  CAS  PubMed  Google Scholar 

  4. Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    Article  CAS  PubMed  Google Scholar 

  5. Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    Article  CAS  PubMed  Google Scholar 

  6. Sakuma Y, Maruyama K, Qin F, Osakabe Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA 103:18828–18833

    Article  Google Scholar 

  7. Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran L-S P, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54–69

    Article  CAS  PubMed  Google Scholar 

  8. Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    CAS  PubMed  Google Scholar 

  9. Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982–993

    Article  CAS  PubMed  Google Scholar 

  10. Zhao TJ, Sun S, Liu Y, Liu JM, Liu Q, Yan YB, Zhou HM (2006) Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and trans-inactive DRE binding factors in Brassica napus. J Biol Chem 281:10752–10759

    Article  CAS  PubMed  Google Scholar 

  11. Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol 42:657–665

    Article  CAS  PubMed  Google Scholar 

  12. Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREB’s transcription factors involved in dehydration- and cold inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  CAS  PubMed  Google Scholar 

  13. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed  Google Scholar 

  14. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  CAS  PubMed  Google Scholar 

  15. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  CAS  PubMed  Google Scholar 

  16. Chen M, Wang Q-Y, Cheng X-G, Xu Z-S, Li L-C, Ye X-G, Xia L-Q, Ma Y–Z (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299–305

    Article  CAS  PubMed  Google Scholar 

  17. Agarwal P, Agarwal PK, Nair S, Sopory SK, Reddy MK (2007) Stress inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and phosphorylation negatively regulates its DNA binding activity. Mol Genet Genomics 277:189–198

    Article  CAS  PubMed  Google Scholar 

  18. Töpfer R, Matzeit V, Gronenborn B, Schell J, Steinbiss H–H (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucl Acids Res 15:5890

    Article  PubMed  Google Scholar 

  19. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Farley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  20. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:431–497

    Article  Google Scholar 

  21. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  22. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  23. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  24. Reddy MK, Nair S, Tewari KK (1998) Cloning, expression and characterization of a gene which encodes a topoisomerase I with positive supercoiling activity in pea. Plant Mol Biol 37:773–784

    Article  CAS  PubMed  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  26. Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF (1998) Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci USA 95:14570–14575

    Article  CAS  PubMed  Google Scholar 

  27. Shimamura C, Ohno R, Nakamura C, Takumi S (2006) Improvement of freezing tolerance in tobacco plants expressing a cold-responsive and chloroplast-targeting protein WCOR15 of wheat. J Plant Physiol 163:213–219

    Article  CAS  PubMed  Google Scholar 

  28. Rogers S, Wells R, Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364–368

    Article  CAS  PubMed  Google Scholar 

  29. Salmeron J, Janzen J, Soneji Y, Bump N, Kamens J, Allen H, Ley SC (2001) Direct phosphorylation of NF-kappaB1 p105 by the IkapaB kinase complex on serine 927 is essential for signal induced p105 proteolysis. J Biol Chem 276:22215–22222

    Article  CAS  PubMed  Google Scholar 

  30. Mishra NS, Pham XH, Sopory SK, Tuteja N (2004) Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci USA 102:509–514

    Article  Google Scholar 

  31. Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    Article  CAS  PubMed  Google Scholar 

  32. Singla-Pareek SL, Reddy MK, Sopory SK (2003) Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA 100:14672–14677

    Article  CAS  PubMed  Google Scholar 

  33. Close TJ (1997) Dehydrins: a commonality in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  34. Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    Article  CAS  PubMed  Google Scholar 

  35. Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, von Koskull-Döring P (2008) A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J 53:264–274

    Article  CAS  PubMed  Google Scholar 

  36. Chini A, Grant JJ, Seki M, Shinozaki K, Loake GJ (2004) Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant J 38:810–822

    Article  CAS  PubMed  Google Scholar 

  37. Fischer U, Dröge-Laser W (2004) Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to Tobacco mosaic virus. Mol Plant Microbe Inter 17:1162–1171

    Article  CAS  Google Scholar 

  38. Negrel J, Martin C (1984) The biosynthesis of feruloyltyramine in Nicotiana tabacum. Phytochemistry 23:2797–2801

    Article  CAS  Google Scholar 

  39. Negrel J, Javelle F (1997) Purification, characterization and partial amino acid sequencing of hydroxy cinnamoyl-CoA:tyramine N-(hydroxycinnamoyl) transferase from tobacco cell-suspension cultures. Eur J Biochem 247:1127–1135

    Article  CAS  PubMed  Google Scholar 

  40. Schmidt A, Grimm R, Schmidt J, Scheel D, Strack D, Rosahl S (1999) Cloning and expression of a potato cDNA encoding hydroxycinnamoyl-CoA:tyramine N-(Hydroxycinnamoyl)transferase. J Biol Chem 274:4273–4280

    Article  CAS  PubMed  Google Scholar 

  41. Ishihara A, Kawata N, Matsukawa T, Iwamura H (2000) Induction of N-hydroxy cinnamoyltyramine synthesis and tyramine N-hydroxycinnamoyltransferase (THT) activity by wounding in maize leaves. Biosci Biotechnol Biochem 64:1025–1031

    Article  CAS  PubMed  Google Scholar 

  42. Sommerville CR, Browse J (1991) Plant lipids: metabolism, mutants, and membranes. Science 252:80–87

    Article  Google Scholar 

  43. Kader JC (1996) Lipid-transfer proteins in plants. Ann Rev Plant Physiol Plant Mol Biol 47:627–654

    Article  CAS  Google Scholar 

  44. Wu G, Robertson A, Liu X, Zheng P, Wilen R, Nesbitt N, Gusta L (2004) A lipid transfer protein gene BG-14 is differentially regulated by abiotic stress, ABA, anisomycin, and sphigosine in bromegrass (Bromus inermis). J Plant Physiol 161:449–458

    Article  CAS  PubMed  Google Scholar 

  45. Sapitnitskaya M, Maul P, McCollum GT, Guy CL, Weiss B, Samach A, Porat R (2006) Postharvest heat and conditioning treatments activate different molecular responses and reduce chilling injuries in grapefruit. J Exp Bot 57:2943–2953

    Article  CAS  PubMed  Google Scholar 

  46. Molina A, Diaz I, Vasil IK, Carbonero P, Garcia-Olmedo F (1996) Two cold- inducible genes encoding lipid transfer protein LTP4 from barley show differential responses to bacterial pathogens. Mol Gen Genet 252:162–168

    Article  CAS  PubMed  Google Scholar 

  47. Kalifa Y, Perlson E, Gilad A, Konrad Z, Scolnik PA, Bar-Zvi D (2004) Over- expression of the water and salt stress-regulated Asr1 gene confers an increased salt tolerance. Plant Cell Environ 27:1459–1468

    Article  CAS  Google Scholar 

  48. Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Toa Y, Xie Z, Chen X, Lam S, Kreps JA, Harpe JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dang JL, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    Article  CAS  PubMed  Google Scholar 

  49. Kreps JA, Wu YJ, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic and cold stress. Plant Physiol 130:2129–2141

    Article  CAS  PubMed  Google Scholar 

  50. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizak Y, Shinozaki K (2002) Monitoring expression profile of 7000 Arabidopsis genes under drought, cold-and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  CAS  PubMed  Google Scholar 

  51. Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring expression profile of 7000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics 2:282–291

    Article  CAS  PubMed  Google Scholar 

  52. Buchanan CD, Lim S, Salzman RA, Kagiampakis I, Morishige DT, Weers BD, Klein RR, Pratt LH, Cordonnier-Pratt MM, Klein PE, Mullet JE (2005) Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 58:699–720

    Article  CAS  PubMed  Google Scholar 

  53. Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by internal grants from ICGEB, NATP (Indian Council and Agriculture Research, New Delhi). P.A. is thankful to Council of Scientific and Industrial Research (CSIR), New Delhi for SRF; and Bhavnagar University for providing facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Parinita Agarwal or Malireddy K. Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, P., Agarwal, P.K., Joshi, A.J. et al. Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol Biol Rep 37, 1125 (2010). https://doi.org/10.1007/s11033-009-9885-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-009-9885-8

Keywords

Navigation