Skip to main content
Log in

Genetic characterization of type II Fusarium head blight resistance derived from transgressive segregation in a cross between Eastern and Western Canadian spring wheat

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Fusarium head blight (FHB) caused by Fusarium graminearum is a devastating disease affecting global wheat production, causing significant losses to yield and grain quality. The Eastern Canadian line FL62R1 was developed using a systemic breeding approach and boasts high levels of FHB resistance with good yield, desirable agronomics, and end-use quality traits. The objective of this study was to identify genetic determinants of type II resistance in a cross between FL62R1 and cv. Stettler, a Canada Western Red Spring variety rated moderately susceptible to FHB. Although neither parent displayed strong resistance to FHB spread within spikes following point inoculation (type II resistance) in greenhouses, strong type II resistance was observed in a large number of progeny, including 6% with resistance comparable to the best check line, Sumai 3. Quantitative trait locus (QTL) mapping identified a locus from chromosome 2BL of Stettler which provides Sumai 3 level type II resistance when combined with favorable FHB resistance QTLs with minor effects from FL62R1. This study provides insight into transgressive segregation for FHB, which despite its importance is poorly understood, rare, and difficult to predict. It also begins to dissect the genetic architecture of FHB resistance in wheat derived from the systemic breeding approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson JA (2007) Marker-assisted selection for Fusarium head blight resistance in wheat. International J Food Microbiol 119:51–53

  • Anderson JA, Stack RW, Liu S, Waldron BL, Fjeld AD, Coyne C, Moreno-Sevilla B, Mitchell Fetch J, Song QJ, Cregan PB, Frohberg RC (2001) DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theor Appl Genet 102(8):1164–1168. https://doi.org/10.1007/s001220000509

    Article  CAS  Google Scholar 

  • Asif M, Eudes F, Randhawa H, Amundsen E, Spaner D (2013) Phytosulfokine alpha enhances microspore embryogenesis in both triticale and wheat. Plant Cell Tissue Organ Cult 116:125–130

    Article  Google Scholar 

  • Bai G, Shaner G (1994) Scab of wheat: prospects for control. Plant Dis 78:760–766

    Article  Google Scholar 

  • Bai GH, Kolb FL, Shaner G, Domier LL (1999) Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat. Phytopathology 89(4):343–348. https://doi.org/10.1094/PHYTO.1999.89.4.343

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Buerstmayr M, Buerstmayr H (2016) The semi-dwarfing alleles Rht-D1b and Rht-B1b show marked differences in their associations with anther-retention in wheat heads and with Fusarium head blight susceptibility. Phytopathology 106(12):1544–1552. https://doi.org/10.1094/PHYTO-05-16-0200-R

    Article  PubMed  Google Scholar 

  • Buerstmayr H, Lemmens M, Hartl L, Doldi L, Steiner B, Stierschneider M, Ruckenbauer P (2002) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (type II resistance). Theor Appl Genet 104:84–91

  • Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 128(1):1–26. https://doi.org/10.1111/j.1439-0523.2008.01550.x

    Article  CAS  Google Scholar 

  • Buerstmayr M, Lemmens M, Steiner B, Buerstmayr H (2011) Advanced backcross QTL mapping of resistance to Fusarium head blight and plant morphological traits in a Triticum macha × T. aestivum population. Theor Appl Genet 123:293–306

  • Burlakoti RR, Mergoum M, Shahryar F, Kianian SF, Adhikari TB (2010) Combining different resistance components enhances resistance to Fusarium head blight in spring wheat. Euphytica 172:197–205

  • Cativelli M, Lewis S, Appendino ML (2013) A Fusarium head blight resistance quantitative trait locus on chromosome 7D of the spring wheat cultivar catbird. Crop Sci 53(4):1464–1471. https://doi.org/10.2135/cropsci2012.07.0435

    Article  Google Scholar 

  • Christensen JJ, Stakman EC, Immer FR (1929) Susceptibility of wheat varieties and hybrids to fusarial head blight in Minnesota. Minn Agric Exp Stn Tech Bull 59:1–24

  • Chu C, Niu Z, Zhong S, Chao S, Friesen TL, Halley S, Elias EM, Dong Y, Faris JD, SS X (2011) Identification and molecular mapping of two QTLs with major effects for resistance to Fusarium head blight in wheat. Theor Appl Genet 123(7):1107–1119. https://doi.org/10.1007/s00122-011-1652-2

    Article  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138(3):963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Comeau A, Langevin F, Caetano VR, Haber S, Savard ME, Voldeng H, Fedck F, Dion Y, Rioux S, Gilbert J, Somers D, Martin R (2008) A systemic approach for the development of FHB resistant germplasm accelerates genetic progress. Cereal Res Commun 36(Supplement 6):5–9. https://doi.org/10.1556/CRC.36.2008.Suppl.B.2

    Article  Google Scholar 

  • Comeau A, Caetano VR, Haber S, Langevin F, Lévesque M, Gilbert J (2010) Systemic heuristic approaches guide the interaction of enhanced genetic diversity and complex stresses to generate better wheat germplasm faster and at lower cost. In: Kovalchuk I, Kovalchuk O (eds) Genome instability and transgenerational effects. Nova Sc. Publ., Hauppage, pp 401–446

    Google Scholar 

  • Cuthbert PA, Somers DJ, Thomas J, Cloutier S, Brule-Babel A (2006) Fine mapping Fhb1, a major gene controlling Fusarium head blight resistance in bread wheat (Triticum aestivum L.) Theor Appl Genet 112(8):1465–1472. https://doi.org/10.1007/s00122-006-0249-7

    Article  CAS  PubMed  Google Scholar 

  • Cuthbert PA, Somers DJ, Brulé-Babel A (2007) Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.) Theor Appl Genet 114(3):429–437. https://doi.org/10.1007/s00122-006-0439-3

    Article  CAS  PubMed  Google Scholar 

  • DePauw RM, Knox RE, Clarke FR, Clarke JM, McCaig TN (2009) Stettler hard red spring wheat. Can J Plant Sci 89(5):945–951. https://doi.org/10.4141/CJPS08227

    Article  Google Scholar 

  • Ellis MH, Rebetzke GJ, Azanza F, Richards RA, Spielmeyer W (2005) Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet 111(3):423–430. https://doi.org/10.1007/s00122-005-2008-6

    Article  CAS  PubMed  Google Scholar 

  • Frohberg RC, Stack RW, Oslon T, Miller JD, Mergoum M (2006) Registration of ‘Alsen’ wheat. Crop Sci 46(5):2311–2312. https://doi.org/10.2135/cropsci2005.12.0501

    Article  Google Scholar 

  • Gale MD, Youssefian S (1985) Dwarfing genes in wheat. In: Russell GE (ed) Progress in Plant Breeding. I Butterworths, London, pp 1–35

  • Gervais L, Dedryver F, Morlais JY, Bodusseau V, Negre S, Bilous M, Groos C, Trottet M (2003) Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor Appl Genet 106(6):961–970. https://doi.org/10.1007/s00122-002-1160-5

    Article  CAS  PubMed  Google Scholar 

  • Gilbert J, Haber S (2013) Overview of some recent research developments in Fusarium head blight of wheat. Can J Plant Pathol 35(2):149–174. https://doi.org/10.1080/07060661.2013.772921

    Article  CAS  Google Scholar 

  • Gilbert J, Tekauz A (2000) Review: recent developments in research on fusarium head blight of wheat in Canada. Can J Plant Pathol 22(1):1–8. https://doi.org/10.1080/07060660009501155

    Article  Google Scholar 

  • Graf RJ, Beres BL, Laroche A, Gaudet DA, Eudes F, Pandeya RS, Badea A, Randhawa HS (2013) Emerson hard red winter wheat. Can J Plant Sci 93(4):741–748. https://doi.org/10.4141/cjps2012-262

    Article  Google Scholar 

  • Häberle J, Schweizer G, Schondelmaier J, Zimmermann G, Hartl L (2009) Mapping of QTL for resistance against Fusarium head blight in the winter wheat population Pelikan//Bussard/Ning8026. Plant Breed 128(1):27–35. https://doi.org/10.1111/j.1439-0523.2008.01540.x

    Article  Google Scholar 

  • He X, Skinnes H, Ovier RE, Jackson EW, Bjørnstad A (2013) Linkage mapping and identification of QTL affecting deoxynivalenol (DON) content (Fusarium resistance) in oats (Avena sativa L.) Theor Appl Genet 126(10):2655–2670. https://doi.org/10.1007/s00122-013-2163-0

    Article  CAS  PubMed  Google Scholar 

  • He X, Singh PK, Dreisigacker S, Singh S, Lillemo M, Duveiller E (2016) Dwarfing genes Rht-B1b and Rht-D1b are associated with both type I FHB susceptibility and low anther extrusion in two bread wheat populations. PLoS One 11(9):e0162499. https://doi.org/10.1371/journal.pone.016249

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedden P (2003) The genes of the Green Revolution. Trends Genet 19(1):5–9. https://doi.org/10.1016/S0168-9525(02)00009-4

    Article  CAS  PubMed  Google Scholar 

  • Liu ZZ, Wang ZY (1990) Improved scab resistance in China: sources of resistance and problems. In: Saunders DA (ed) Wheat for the non-traditional warm areas. A Proceeding of the International Conference. Foz do Iguacu, Brazil, pp 178–187

    Google Scholar 

  • Liu S, Zhang X, Pumphrey MO, Stack RW, Gill BS, Anderson JA (2006) Complex microcolinearity among wheat, rice, and barley revealed by fine mapping of the genomic region harboring a major QTL for resistance to Fusarium head blight in wheat. Funct Integr Genomics 6(2):83–89. https://doi.org/10.1007/s10142-005-0007-y

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Pumphrey M, Gill B, Trick H, Zhang J, Dolezel J, Chalhoub B, Anderson J (2008) Toward positional cloning of Fhb1, a major QTL for Fusarium head blight resistance in wheat. Cereal Res Commun 36(Supplement 6):195–201. https://doi.org/10.1556/CRC.36.2008.Suppl.B.15

    Article  CAS  Google Scholar 

  • Lorieux M (2012) MapDisto: fast and efficient computation of genetic linkage maps. Mol Breed 30(2):1231–1235. https://doi.org/10.1007/s11032-012-9706-y

    Article  CAS  Google Scholar 

  • Lu QX, Lillemo M, Skinnes H, He XY, Shi JR, Ji F, Dong YH, Bjornstad A (2013) Anther extrusion and plant height are associated with type I resistance to Fusarium head blight in bread wheat line ‘Shanghai-3/Catbird’. Theor Appl Genet 126:317–334

    Article  CAS  PubMed  Google Scholar 

  • Lv C, Song Y, Gao L, Yao Q, Zhou R, Xu R, Jia J (2014) Integration of QTL detection and marker assisted selection for improving resistance to Fusarium head blight and important agronomic traits in wheat. Crop J 2(1):70–78. https://doi.org/10.1016/j.cj.2013.10.004

    Article  Google Scholar 

  • Maccaferri M, Ricci A, Salvi S, Milner SG, Noli E, Martelli PL, Casadio R, Akhunov E, Scalabrin S, Vendramin V, Ammar K, Blanco A, Desiderio F, Distelfeld A, Dubcovsky J, Fahima T, Faris J, Korol A, Massi A, Mastrangelo AM, Morgante M, Pozniak C, N’Diaye A, Xu S, Tuberosa R (2015) A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotechnol J 13(5):648–663. https://doi.org/10.1111/pbi.12288

    Article  CAS  PubMed  Google Scholar 

  • Malihipour A, Gilbert J, Fedak G, Brûlé-Babel AL, Cao W (2015) Characterization of agronomic traits in a population of wheat derived from Triticum timopheevii and their association with Fusarium head blight. Eur J Plant Pathol 144:1–13

    Google Scholar 

  • Mao SL, Wei YM, Cao WG, Lan XJ, Yu M, Chen ZM, Chen GY, Zheng YL (2010) Confirmation of the relationship between plant height and Fusarium head blight resistance in wheat (Triticum aestivum L.) by QTL meta-analysis. Euphytica 174:343–356

  • McCartney CA, Somers DJ, Fedak G, DePauw RM, Thomas J, Fox SL, Humphreys DG, Lukow O, Savard ME, McCallum BD, Gilbert J, Cao W (2007) The evaluation of FHB resistance QTLs introgressed into elite Canadian spring wheat germplasm. Mol Breed 20(3):209–221. https://doi.org/10.1007/s11032-007-9084-z

    Article  Google Scholar 

  • McMullen M, Bergstrom G, De Wolf E, Dill-Macky R, Hershman D, Shaner G, Van Sanford D (2012) A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Dis 96(12):1712–1728. https://doi.org/10.1094/PDIS-03-12-0291-FE

    Article  Google Scholar 

  • Mesterhazy A (1995) Types and components of resistance to Fusarium head blight. Plant Breed 114(5):377–386. https://doi.org/10.1111/j.1439-0523.1995.tb00816.x

    Article  Google Scholar 

  • Miedaner T, Korzun V (2012) Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology 102(6):560–566. https://doi.org/10.1094/PHYTO-05-11-0157

    Article  PubMed  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Rawat N, Pumphrey MO, Liu S, Zhang X, Tiwari VK, Ando K, Trick HN, Bockus WW, Akhunov E, Anderson JA, Gill BS (2016) Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nat Genet 48(12):1576–1580. https://doi.org/10.1038/ng.3706

    Article  CAS  PubMed  Google Scholar 

  • Rossi V, Ravanetti A, Pattori E, Giosuè S (2001) Influence of temperature and humidity on the infection of wheat spikes by some fungi causing fusarium head blight. J Plant Pathol 83:189–198

    Google Scholar 

  • Salameh A, Buerstmayr M, Steiner B, Neumayer A, Lemmens M, Buerstmayr H (2011) Effects of introgression of two QTL for Fusarium head blight resistance from Asian spring wheat by marker-assisted backcrossing into European winter wheat on Fusarium head blight resistance, yield and quality traits. Mol Breed 28(4):485–494. https://doi.org/10.1007/s11032-010-9498-x

    Article  Google Scholar 

  • Schmolke M, Zimmermann G, Buerstmayr H, Schweizer G, Miedaner T, Korzun V, Ebmeyer E, Hartl L (2005) Molecular mapping of Fusarium head blight resistance in the winter wheat population Dream/Lynx. Theor Appl Genet 111(4):747–756. https://doi.org/10.1007/s00122-005-2060-2

    Article  CAS  PubMed  Google Scholar 

  • Schmolke M, Zimmermann G, Schweizer G, Miedaner T, Korzun V, Ebmeyer E, Hartl L (2008) Molecular mapping of quantitative trait loci for field resistance to Fusarium head blight in a European winter wheat population. Plant Breed 127(5):459–464. https://doi.org/10.1111/j.1439-0523.2007.01486.x

    Article  Google Scholar 

  • Schroeder HW, Christensen JJ (1963) Factors affecting resistance of wheat to scab by Gibberella zeae. Phytopathology 53:831–838

    Google Scholar 

  • Semagn K, Skinnes H, Bjornstad A, Maroy AG, Tarkegne Y (2007) Quantitative trait loci controlling Fusarium head blight resistance and low deoxynivalenol content in hexaploid wheat population from Arina and NK93604. Crop Sci 47(1):294–303. https://doi.org/10.2135/cropsci2006.02.0095

    Article  CAS  Google Scholar 

  • Skinnes H, Semagn K, Tarkegne Y, Maroy AG, Bjornstad A (2010) The inheritance of anther extrusion in hexaploid wheat and its relationship to Fusarium head blight resistance and deoxynivalenol content. Plant Breed 129(2):149–155. https://doi.org/10.1111/j.1439-0523.2009.01731.x

    Article  CAS  Google Scholar 

  • Somers DJ, Fedak G, Savard M (2003) Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome 46(4):555–564. https://doi.org/10.1139/g03-033

    Article  CAS  PubMed  Google Scholar 

  • Somers DJ, Fedak G, Clarke J, Cao WG (2006) Mapping of FHB resistance QTLs in tetraploid wheat. Genome 49(12):1586–1593. https://doi.org/10.1139/g06-127

    Article  CAS  PubMed  Google Scholar 

  • Srinivasachary GN, Steed A, Faure S, Bayles R, Jennings P, Nicholson P (2008) Mapping of QTL associated with Fusarium head blight in spring wheat RL4137. Czech J Genet Plant 44:147–159

    Google Scholar 

  • Srinivasachary GN, Steed A, Hollins T, Bayles R, Jennings P, Nicholson P (2009) Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor Appl Genet 118(4):695–702. https://doi.org/10.1007/s00122-008-0930-0

    Article  CAS  PubMed  Google Scholar 

  • Steiner B, Lemmens M, Griesser M, Scholz U, Schondelmaier J, Buerstmayr H (2004) Molecular mapping of resistance to Fusarium head blight in the spring wheat cultivar Frontana. Theor Appl Genet 109(1):215–224. https://doi.org/10.1007/s00122-004-1620-1

    Article  CAS  PubMed  Google Scholar 

  • Sung J, Cook RJ (1981) Effect of water potential on reproduction and spore germination of Fusarium roseum “Graminearum”, “Culmorum” and “Avenaceum”. Phytopathology 71(5):499–450. https://doi.org/10.1094/Phyto-71-499

    Article  Google Scholar 

  • Szabó-Hevér Á, Lehoczki-Krsjak S, Tóth B, Purnhauser L, Buerstmayr H, Steiner B, Mesterházy Á (2012) Identification and validation of fusarium head blight and Fusarium-damaged kernel QTL in a Frontana/Remus DH mapping population. Can J Plant Pathol 34(2):224–238. https://doi.org/10.1080/07060661.2012.676571

    Article  Google Scholar 

  • Townley-Smith TF, Humphreys DG (2000) Central bread wheat co-operative test, 1999. Pages 22-140 in Minutes, 11th Ann. Meeting, Prairie Registration Recommending Committee for Grain, Edmonton, AB

  • Townley-Smith TF, Czarnecki EM (2008) AC Domain hard red spring wheat. Can J Plant Sci 88(2):347–350. https://doi.org/10.4141/CJPS07004

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78. https://doi.org/10.1093/jhered/93.1.77

    Article  CAS  PubMed  Google Scholar 

  • Waldron BL, Moreno-Sevilla B, Anderson JA, Stack RW, Frohberg RC (1999) RFLP mapping of QTL for Fusarium head blight resistance in wheat. Crop Sci 39(3):805–811. https://doi.org/10.2135/cropsci1999.0011183X003900030032x

    Article  CAS  Google Scholar 

  • Wang SC, Wong DB, Forrest K, Allen A, Chao SM, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12(6):787–796. https://doi.org/10.1111/pbi.12183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward TJ, Clear RM, Rooney AP, O’Donnell K, Gaba D, Patrick S, Starkey DE, Gilbert J, Geiser DM, Nowicki TW (2008) An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet Biol 45(4):473–484. https://doi.org/10.1016/j.fgb.2007.10.003

    Article  PubMed  Google Scholar 

  • Wilde F, Korzun V, Ebmeyer E, Geiger HH, Miedaner T (2007) Comparison of phenotypic and marker-based selection for Fusarium head blight resistance and DON content in spring wheat. Mol Breed 19:57–370

    Article  Google Scholar 

  • Xue S, Xu F, Tang M, Zhou Y, Li G, An X, Lin F, Xu H, Jia H, Zhang L, Kong Z, Ma Z (2011) Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.) Theor Appl Genet 123(6):1055–1063. https://doi.org/10.1007/s00122-011-1647-z

    Article  PubMed  Google Scholar 

  • Yan W, Li H, Cai S, Ma H, Rebetzke G, Liu C (2011) Effects of plant height on type I and type II resistance to fusarium head blight in wheat. Plant Pathol 60(3):506–512. https://doi.org/10.1111/j.1365-3059.2011.02426.x

    Article  Google Scholar 

  • Yang ZP, Gilbert J, Fedak G, Somers DJ (2005) Genetic characterization of QTL associated with resistance to Fusarium head blight in a doubled-haploid spring wheat population. Genome 48(2):187–196. https://doi.org/10.1139/g04-104

    Article  CAS  PubMed  Google Scholar 

  • Ye, Z (2015) Analysis of resistance to fusarium head blight (FHB) in winter wheat and evaluation of genetics and cultural practices for FHB mitigation. Dissertation. Manitoba, University of Manitoba

  • Zhang Q, Axtman JE, Faris JD, Chao S, Zhang Z, Friesen TL, Zhong S, Cai X, Elias ME, SS X (2014) Identification and molecular mapping of quantitative trait loci for Fusarium head blight resistance in emmer and durum wheat using a single nucleotide polymorphism-based linkage map. Mol Breed 34(4):1677–1687. https://doi.org/10.1007/s11032-014-0180-6

    Article  CAS  Google Scholar 

  • Zhou WC, Kolb FL, Bai GH, Shaner GE, Domier LL (2002) Genetic analysis of scab resistance QTL in wheat with microsatellite and AFLP markers. Genome 45(4):719–725. https://doi.org/10.1139/g02-034

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank André Comeau and François Langevin for providing the FL62R1 germplasm, Ron DePauw for Stettler, Janet Condie for technical assistance with the 90K SNP genotyping, as well as Bianyun Yu and Manoj Kulkarni for critically reviewing the manuscript.

Funding

This research was funded by the Wheat Improvement Flagship Program, which is the National Research Council Canada’s contribution to the Canadian Wheat Alliance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre R. Fobert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 1920 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Francis, T., Gao, P. et al. Genetic characterization of type II Fusarium head blight resistance derived from transgressive segregation in a cross between Eastern and Western Canadian spring wheat. Mol Breeding 38, 13 (2018). https://doi.org/10.1007/s11032-017-0761-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-017-0761-2

Keywords

Navigation