Skip to main content
Log in

Effects of introgression of two QTL for fusarium head blight resistance from Asian spring wheat by marker-assisted backcrossing into European winter wheat on fusarium head blight resistance, yield and quality traits

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Breeding for fusarium head blight (FHB) resistance of wheat is a continuous challenge for plant breeders. Resistance to FHB is a quantitative trait, governed by several to many genes and modulated by environmental conditions. The presented study was undertaken to assess the effect on improving FHB resistance and on possible unwanted side effects (‘linkage drag’) of two resistance QTL, namely Fhb1 and Qfhs.ifa-5A, from the spring wheat line CM-82036 when transferred by marker-assisted backcrossing into several European winter wheat lines. To achieve these goals, we developed and evaluated fifteen backcross-two–derived families based on nine European winter wheat varieties as recipients and the FHB resistant variety CM-82036 as resistance donor. The QTL Qfhs.ifa-5A had a relatively small impact on increasing FHB resistance. On average lines with Fhb1 plus Qfhs.ifa-5A combined were only slightly more resistant compared to lines with Fhb1 alone. The obtained results suggest that the effect of the spring wheat–derived QTL on improving FHB resistance increases in the order Qfhs.ifa-5A < Fhb1 ≤ Qfhs.ifa-5A plus Fhb1 combined. The genetic background of the recipient line had a large impact on the resistance level of the obtained lines. No systematic negative effect of the spring wheat–derived QTL on grain yield, thousand grain weight, hectoliter weight and protein content was found. The use of spring wheat–derived FHB resistance QTL for breeding high yielding cultivars with improved FHB resistance appears therefore highly promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson JA, Stack RW, Liu S, Waldron BL, Fjeld AD, Coyne C, Moreno-Sevilla B, Fetch JM, Song QJ, Cregan PB, Frohberg RC (2001) DNA markers for fusarium head blight resistance QTLs its two wheat populations. Theor Appl Genet 102:1164–1168

    Article  CAS  Google Scholar 

  • Anderson JA, Chao SM, Liu SX (2007) Molecular breeding using a major QTL for fusarium head blight resistance in wheat. Crop Sci 47:S112–S119

    Article  Google Scholar 

  • Buerstmayr H, Steiner B, Lemmens M, Ruckenbauer P (2000) Resistance to fusarium head blight in winter wheat: heritability and trait associations. Crop Sci 40:1012–1018

    Article  Google Scholar 

  • Buerstmayr H, Lemmens M, Hartl L, Doldi L, Steiner B, Stierschneider M, Ruckenbauer P (2002) Molecular mapping of QTLs for fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (type II resistance). Theor Appl Genet 104:84–91

    Article  PubMed  CAS  Google Scholar 

  • Buerstmayr H, Steiner B, Hartl L, Griesser M, Angerer N, Lengauer D, Miedaner T, Schneider B, Lemmens M (2003) Molecular mapping of QTLs for fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread. Theor Appl Genet 107:503–508

    Article  PubMed  CAS  Google Scholar 

  • Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for fusarium head blight resistance in wheat: a review. Plant Breed 128:1–26

    Article  CAS  Google Scholar 

  • Liu S, Zhang X, Pumphrey MO, Stack RW, Gill BS, Anderson JA (2006) Complex microcolinearity among wheat, rice, and barley revealed by fine mapping of the genomic region harboring a major QTL for resistance to fusarium head blight in wheat. Funct Integr Genomics 6:83–89

    Article  PubMed  CAS  Google Scholar 

  • Liu SX, Pumphrey MO, Gill BS, Trick HN, Zhang JX, Dolezel J, Chalhoub B, Anderson JA (2008) Toward positional cloning of Fhb1, a major QTL for fusarium head blight resistance in wheat. Cereal Res Commun 36:195–201

    Article  CAS  Google Scholar 

  • Löffler M, Schön CC, Miedaner T (2009) Revealing the genetic architecture of FHB resistance in hexaploid wheat (Triticum aestivum L.) by QTL meta-analysis. Mol Breed 23:473–488

    Article  Google Scholar 

  • McCartney CA, Somers DJ, Fedak G, DePauw RM, Thomas J, Fox SL, Humphreys DG, Lukow O, Savard ME, McCallum BD, Gilbert J, Cao W (2007) The evaluation of FHB resistance QTLs introgressed into elite Canadian spring wheat germplasm. Mol Breed 20:209–221

    Article  Google Scholar 

  • Miedaner T, Wilde F, Korzun V, Ebmeyer E (2008) Phenotypic selection for high resistance to fusarium head blight after introgression of quantitative trait loci (QTL) from exotic spring wheat and verification by simple sequence repeat markers a posteriori. Plant Breed 127:217–221

    Article  Google Scholar 

  • Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathol 44:207–238

    Article  Google Scholar 

  • Ruckenbauer P, Buerstmayr H, Lemmens M (2001) Present strategies in resistance breeding against scab (Fusarium spp.). Euphytica 119:121–127

    Article  Google Scholar 

  • SAS Institute Inc (2004) SAS 9.1.3 Help and Documentation, Cary, NC: SAS Institute Inc., 2000–2004

  • Schroeder HW, Christensen JJ (1963) Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53:831–838

    Google Scholar 

  • Utz HF (2005) PLABSTAT. A computer program for statistical analysis of plant breeding experiments. University of Hohenheim, Institute of Plant Breeding, Seed Science, and Population Genetics, Germany. Available at: http://www.uni-hohenheim.de/plantbreeding/software/plabstat/plabstat_manual_eng.pdf. Verified 27 April 2010

  • Van Eeuwijk FA, Mesterhazy A, Kling CI, Ruckenbauer P, Saur L, Burstmayr H, Lemmens M, Keizer LCP, Maurin N, Snijders CHA (1995) Assessing non-specificity of resistance in wheat to head blight caused by inoculation with European strains of Fusarium culmorum, F. graminearum and F. nivale using a multiplicative model for interaction. Theor Appl Genet 90:221–228

    Article  Google Scholar 

  • Waldron BL, Moreno-Sevilla B, Anderson JA, Stack RW, Frohberg RC (1999) RFLP mapping of QTL for fusarium head blight resistance in wheat. Crop Sci 39:805–811

    Article  CAS  Google Scholar 

  • Wilde F, Korzun V, Ebmeyer E, Geiger HH, Miedaner T (2007) Comparison of phenotypic and marker-based selection for Fusarium head blight resistance and DON content in spring wheat. Mol Breed 19:357–370

    Article  CAS  Google Scholar 

  • Xue SL, Li GQ, Jia HY, Lin F, Cao Y, Xu F, Tang MZ, Wang Y, Wu XY, Zhang ZZ, Zhang LX, Kong ZX, Ma ZQ (2010) Marker-assisted development and evaluation of near-isogenic lines for scab resistance QTLs of wheat. Mol Breed 25:397–405

    Article  CAS  Google Scholar 

  • Zhou WC, Kolb FL, Bai GH, Domier LL, Boze LK, Smith NJ (2003) Validation of a major QTL for scab resistance with SSR markers and use of marker-assisted selection in wheat. Plant Breed 122:40–46

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Bachar Almaghrabi for his support in field testing for FHB resistance in 2006. We sincerely thank Heinrich Grausgruber for biometrical support and advice and Matthias Fidesser and Lisa Schmid for technical support of the field experiments. We also acknowledge Georg Mayrpeter for contributing to the molecular marker analysis. Aziz Salameh was supported by a North–South Dialogue grant, funded by the Austrian Ministry of Foreign Affairs and managed by the Austrian Academic Exchange Service (OEAD). The research of IFA-Tulln is supported by the Government of Lower Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Buerstmayr.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salameh, A., Buerstmayr, M., Steiner, B. et al. Effects of introgression of two QTL for fusarium head blight resistance from Asian spring wheat by marker-assisted backcrossing into European winter wheat on fusarium head blight resistance, yield and quality traits. Mol Breeding 28, 485–494 (2011). https://doi.org/10.1007/s11032-010-9498-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-010-9498-x

Keywords

Navigation