Skip to main content
Log in

Genetic dissection of Fusarium head blight resistance in spring wheat cv. ‘Glenn’

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Fusarium head blight (FHB) is a major disease of wheat in many wheat-growing regions affecting wheat yield and quality. Glenn is arguably the most FHB-resistant spring wheat cultivar in the USA. To decipher the genetics of FHB resistance in Glenn, a population of 112 recombinant inbred lines was developed from the cross Glenn × MN00261-4 and evaluated for various FHB related traits at multiple locations in two states (North Dakota and Minnesota) over 3 years. Quantitative trait loci (QTL) analysis detected 15 QTL for FHB resistance related traits and heading date (HD). One QTL for FHB incidence (INC; type I resistance), six QTL for FHB severity (SEV; type II resistance), one QTL for Fusarium damaged kernels (FDK; type IV resistance), four QTL for disease index (DI), and three QTL for HD were detected. Major QTL defined as those consistent across multiple environments and explaining > 10% of the phenotypic variation were detected on chromosomes 5BL, 6BS, and 7AS. They were associated with multiple FHB variables and HD. The stable 6BS QTL with a large effect for FHB SEV resistance corresponded to the Fhb2 gene in Sumai 3. In addition, potentially novel QTL were identified on 1AS, 5BL and 7DS. Our study showed that FHB resistance in the GM population was contributed by loci other than Fhb1. The major QTL detected for FHB resistance have potential for use in marker-assisted breeding for FHB resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang SY, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  CAS  PubMed  Google Scholar 

  • Anderson JA, Stack RW, Liu S, Waldron BL, Fjeld AD, Coyne C, Moreno-Sevilla P, Fetch JM, Song QJ, Cregan PB, Frohberg RC (2001) DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theor Appl Genet 102:1164–1168

    Article  CAS  Google Scholar 

  • Bai GH, Shaner G (1996) Variation in Fusarium graminearum and cultivar resistance to wheat scab. Plant Dis 80:975–979

    Article  Google Scholar 

  • Bekele GT (1995) Head SCAB screening methods used in CIMMYT. In: Wheats for more tropical environments. CIMMYT, Mexico D.F., Mexico, pp 169–173

  • Buerstmayr H, Lemmens M, Hartl L, Doldi L, Steiner B, Stierschneider M, Ruckenbauer P (2002) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (type II resistance). Theor Appl Genet 104:84–91

    Article  CAS  PubMed  Google Scholar 

  • Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 128:1–26

    Article  CAS  Google Scholar 

  • Buerstmayr M, Huber K, Heckmann J, Steiner B, Nelson JC, Buerstmayr H (2012) Mapping of QTL for Fusarium head blight resistance and morphological and developmental traits in three backcross populations derived from Triticum dicoccum × Triticum durum. Theor Appl Genet 125:1751–1765

    Article  PubMed  PubMed Central  Google Scholar 

  • Buerstmayr M, Alimari A, Steiner B, Buerstmayr H (2013) Genetic mapping of QTL for resistance to Fusarium head blight spread (type 2 resistance) in a Triticum dicoccoides × Triticum durum backcross-derived population. Theor Appl Genet 126:2825–2834

    Article  CAS  PubMed  Google Scholar 

  • Cuthbert PA, Somers DJ, Thomas J, Cloutier S, Brule-Babel A (2006) Fine mapping Fhb1, a major gene controlling Fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 112:1465–1472

    Article  CAS  PubMed  Google Scholar 

  • Cuthbert P, Somers D, Brulé-Babel A (2007) Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 114:429–437

    Article  CAS  PubMed  Google Scholar 

  • Derrien T, Andre C, Galibert F, Hitte C (2007) AutoGRAPH: an interactive web server for automating and visualizing comparative genome maps. Bioinformatics 23:498–499

    Article  CAS  PubMed  Google Scholar 

  • Dill-Macky R (2003) Inoculation methods and evaluation of Fusarium head blight resistance in wheat. In: Leonard KJ, Bushnell WR (eds) Fusarium head blight in wheat and barley. APS Press, St Paul, pp 184–210

    Google Scholar 

  • Draeger R, Gosman N, Steed A, Chandler E, Thomsett M, Srinivasachary SJ, Buerstmayr H, Lemmens M, Schmolke M, Mesterhazy A, Nicholson P (2007) Identification of QTLs for resistance to Fusarium head blight, DON accumulation and associated traits in the winter wheat variety Arina. Theor Appl Genet 115:617–625

    Article  CAS  PubMed  Google Scholar 

  • Emrich K, Wilde F, Miedaner T, Piepho HP (2008) REML approach for adjusting the Fusarium head blight rating to a phenological date in inoculated selection experiments of wheat. Theor Appl Genet 117:65–73

    Article  CAS  PubMed  Google Scholar 

  • Frohberg RC, Stack RW, Mergoum M (2004) Registration of spring wheat germplasm ND2710 resistant to Fusarium head blight. Crop Sci 44:1498–1499

    Article  Google Scholar 

  • Frohberg RC, Stack RW, Olson T, Miller JD, Mergoum M (2006) Registration of ‘Alsen’ wheat. Crop Sci 46:2311–2312

    Article  Google Scholar 

  • Gilbert J, Fernando W (2004) Epidemiology and biological control of Gibberella zeae/Fusarium graminearum. Can J Plant Pathol 26:464–472

    Article  Google Scholar 

  • de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CarthaGene: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 21:1703–1704

    Article  PubMed  CAS  Google Scholar 

  • Gunnaiah R, Kushalappa AC, Duggavathi R, Fox S, Somers DJ (2012) Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributes to resistance against Fusarium graminearum. PLoS ONE 7:e40695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haberle J, Holzapfel J, Schweizer G, Hartl L (2009) A major QTL for resistance against Fusarium head blight in European winter wheat. Theor Appl Genet 199:325–332

    Article  Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martínez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–111

    Google Scholar 

  • Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR (2012) A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J 10:826–839

    Article  CAS  PubMed  Google Scholar 

  • Jiang GL, Dong Y, Shi J, Ward RW (2007) QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306. II. Resistance to deoxynivalenol accumulation and grain yield loss. Theor Appl Genet 115:1043–1052

    Article  PubMed  Google Scholar 

  • Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 24:2788–2789

    Article  CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombinant values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Lanning SP, Carlson GR, Nash D, Wichman DM, Kephart KD, Stougaard RN, Kushnak GD, Eckhoff JL, Grey WE, Dyer A, Talbert LE (2006) Registration of ‘Vida’ wheat. Crop Sci 46:2315–2316

    Article  Google Scholar 

  • Li T, Bai G, Wu S, Gu S (2011) Quantitative trait loci for resistance to Fusarium head blight in a Chinese wheat landrace Haiyanzhong. Theor Appl Genet 122:1497–1502

    Article  PubMed  Google Scholar 

  • Lin F, Xue SL, Zhang ZZ, Zhang CQ, Kong ZX, Yao GQ, Tian DG, Zhu HL, Li CJ, Cao Y, Wei JB, Luo QY, Ma ZQ (2006) Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 × Wangshuibai population. II: type I resistance. Theor Appl Genet 112:528–535

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Pumphrey MO, Gill BS, Trick HN, Zhang JX, Dolezel J, Chalhoub B, Anderson JA (2008) Toward positional cloning of Fhb1, a major QTL for Fusarium head blight resistance in wheat. Cereal Res Commun 36:195–201

    Article  CAS  Google Scholar 

  • Liu SY, Hall MD, Griffey CA, McKendry AL (2009) Meta-analysis of QTL associated with fusarium head blight resistance in wheat. Crop Sci 49:1955–1968

    Article  CAS  Google Scholar 

  • Löffler M, Schon CC, Miedaner T (2009) Revealing the genetic architecture of FHB resistance in hexaploid wheat (Triticum aestivum L.) by QTL meta-analysis. Mol Breed 23:473–488

    Article  CAS  Google Scholar 

  • Lu QX, Szabo-Hever A, Bjørnstad A, Lillemo M, Semagn K, Mesterhazy A (2011) Two major resistances QTL were required to counteract the increased susceptibility to Fusarium head blight at the Rht-D1b gene in wheat. Crop Sci 51:2430–2438

    Article  Google Scholar 

  • Lu QX, Lillemo M, Skinnes H, He XY, Shi JR, Ji F, Dong YH, Bjornstad A (2013) Anther extrusion and plant height are associated with Type I resistance to Fusarium head blight in bread wheat line ‘Shanghai-3/Catbird’. Theor Appl Genet 126:317–334

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri M, Zhang J, Bulli P, Abate Z, Chao S, Cantu D, Bossolini E, Chen X, Pumphrey M, Dubcovsky J (2015) A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3 (Bethesda) 5:449–465

    Article  Google Scholar 

  • Mergoum M, Frohberg RC, Miller JD, Stack RW (2005) Registration of ‘Steele-ND’ wheat. Crop Sci 45:1163–1164

    Article  Google Scholar 

  • Mergoum M, Frohberg RC, Stack RW, Olson T, Friesen TL, Rasmussen JB (2006) Registration of ‘Glenn’ wheat. Crop Sci 46:473–474

    Article  Google Scholar 

  • Mergoum M, Frohberg RC, Stack RW, Rasmussen JW, Friesen TL (2008) Registration of ‘Faller’ spring wheat. J Plant Reg 2:224–229

    Article  Google Scholar 

  • Mergoum M, Simsek S, Frohberg RC, Rasmussen JB, Friesen TL, Adhikari T (2011) ‘Barlow’: a high-quality and high-yielding hard red spring wheat cultivar adapted to the North Central Plains of the USA. J Plant Reg 5:62–67

    Article  Google Scholar 

  • Mergoum M, Frohberg RC, Stack RW, Singh PK, Adhikari TB, Rasmussen JB, Alamri MS, Friesen TL (2012) ND 803 spring wheat germplasm combining resistance to scab and leaf diseases with good agronomic and quality traits. J Plant Reg 7:113–118

    Article  Google Scholar 

  • Mesterhazy A (1995) Types and components of resistance to Fusarium head blight. Plant Breed 114:377–386

    Article  Google Scholar 

  • Nganje WE, Bangsund DA, Leistritz FL, Wilson WW, Tiapo NM (2004) Regional economic impacts of Fusarium head blight in wheat and barley. Rev Agric Econ 26:332–347

    Article  Google Scholar 

  • Otto CD, Kianian SF, Elias EM, Stack RW, Joppa LR (2002) Genetic dissection of a major Fusarium head blight QTL in tetraploid wheat. Plant Mol Biol 48:625–632

    Article  CAS  PubMed  Google Scholar 

  • Petersen S, Lyerly JH, Maloney PV, Brown-Guedira G, Cowger C, Costa JM, Dong Y, Murphy JP (2016) Mapping of Fusarium head blight resistance quantitative trait loci in winter wheat cultivar NC-Neuse. Crop Sci 56:1473–1483

    Article  CAS  Google Scholar 

  • Pumphrey MO, Bernardo R, Anderson JA (2007) Validating the Fhb1 QTL for Fusarium head blight resistance in near isogenic wheat lines developed from breeding populations. Crop Sci 47:200–206

    Article  CAS  Google Scholar 

  • Randhawa HS, Asif M, Pozniak C, Clarke JM, Graf RJ, Fox SL, Humphreys DJ, Knox RE, DePauw RM, Singh AK, Cuthbert RD, Hucl P, Spaner D (2013) Application of molecular markers to wheat breeding in Canada. Plant Breed 132:458–471

    CAS  Google Scholar 

  • Rawat N, Pumphrey MO, Liu S, Zhang X, Tiwari VK, Ando K, Trick HN, Bockus WW, Akhunov E, Anderson JA, Gill BS (2016) Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nat Genet 12:1576–1580

    Article  CAS  Google Scholar 

  • Ruan Y, Comeau A, Langevin F, Hucl P, Clarke JM, Brule-Babel A, Pozniak CJ (2012) Identification of novel QTL for resistance to Fusarium head blight in a tetraploid wheat population. Genome 55:853–864

    Article  CAS  PubMed  Google Scholar 

  • Rudd JC, Horsley RD, McKendry AL, Elias EM (2001) Host plant resistance genes for Fusarium head blight: sources, mechanisms and utility in conventional breeding systems. Crop Sci 41:620–627

    Article  Google Scholar 

  • SAS Institute Inc (2004) SAS online doc, version 9.1.2 SAS Inst., Cary, NC

  • Shin S, Torres Acosta JA, Heinen SJ, McCormick Susan P, Lemmens M, Kovalsky Paris MP, Berthiller F, Adam G, Muehlbauer GJ (2012) Transgenic Arabidopsis thaliana expressing a barley UDPglucosyltransferase exhibit resistance to the mycotoxin deoxynivalenol. J Exp Bot 63:4731–4740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somers DJ, Fedak G, Clarke J, Wenguang C (2006) Mapping of FHB resistance QTLs in tetraploid wheat. Genome 49:1586–1593

    Article  CAS  PubMed  Google Scholar 

  • Su Z, Bernardo A, Tian B, Chen H, Wang S, Ma H, Cai S, Liu D, Zhang D, Li T, Trick H, Amand PS, Yu J, Zhang Z, Bai G (2019) A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat Genet 51:1099–1105

    Article  CAS  PubMed  Google Scholar 

  • Tabachnick BG, Fidell LS (2001) Using multivariate statistics. Allyn and Bacon, Inc., Boston, p 85

    Google Scholar 

  • Venske E, Dos Santos RS, Farias DDR, Rother V, da Maia LC, Pegoraro C, Costa de Oliveira A (2019) Meta-analysis of the QTLome of Fusarium head blight resistance in bread wheat: refining the current puzzle. Front Plant Sci 10:727

    Article  PubMed  PubMed Central  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Subudhi PK, Crasta OR, Rosenow DT, Mullet J, Nguyen HT (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43:461–469

    Article  CAS  PubMed  Google Scholar 

  • Xue S, Xu F, Tang M, Zhou Y, Li G, An X, Lin F, Xu H, Jia H, Zhang L (2011) Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor Appl Genet 123:1055–1063

    Article  PubMed  Google Scholar 

  • Yang Z, Gilbert J, Fedak G, Somers D (2005) Genetic characterization of QTL associated with resistance to Fusarium head blight in a doubled-haploid spring wheat population. Genome 48:187–196

    Article  CAS  PubMed  Google Scholar 

  • Yu JB, Bai GH, Zhou WC, Dong YH, Kolb FL (2008) Quantitative trait loci for Fusarium head blight resistance in a recombinant inbred population of Wangshuibai/Wheaton. Phytopathology 98:87–94

    Article  PubMed  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weeds Res 14:415–421

    Article  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Kolb F, Bai G, Shaner G, Domier L (2002) Genetic analysis of scab resistance QTL in wheat with microsatellite and AFLP markers. Genome 45:719–727

    Article  CAS  PubMed  Google Scholar 

  • Zhuang Y, Gala A, Yen Y (2013) Identification of functional genic components of major Fusarium head blight resistance quantitative trait loci in wheat cultivar Sumai 3. Mol Plant Microbe Interact 26:442–450

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The material used in this study was based upon work supported by the U.S. Department of Agriculture, under Agreement No. 59-0206-9-066. This is a cooperative project with the U.S. Wheat & Barley Scab Initiative. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture. The authors thank J. Underdahl, M. Abdallah, A. Walz, B. Schatz, J. Hegstad, and A. Peckrul for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Mergoum.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

The research was conducted with the ethical and professional standards of North Dakota State University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ElDoliefy, A.E.A., Kumar, A., Anderson, J.A. et al. Genetic dissection of Fusarium head blight resistance in spring wheat cv. ‘Glenn’. Euphytica 216, 71 (2020). https://doi.org/10.1007/s10681-020-02610-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-020-02610-0

Keywords

Navigation