Skip to main content
Log in

Crystallization kinetics of glass microspheres with yttrium aluminium garnet (YAG) composition

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A combination of sol–gel Pechini method and flame synthesis was used to prepare yttrium aluminate glass microspheres with the garnet composition (YAG, 62.5 mol% aluminium oxide, 37.5 mol% yttrium oxide). Prepared glass microbeads were studied by optical microscopy, SEM, X-ray diffraction (XRD), differential scanning calorimetry (DSC) and high-temperature (HT) XRD analysis. Formation of YAG as the only crystalline phase was observed during HT XRD experiment in the temperature interval (750–1200 °C), with the onset of YAG phase crystallization in the temperature interval 860–870 °C and most prominent increase in the YAG phase content between 905 and 910 °C. The experimental data obtained by DSC analysis and the Johnson–Mehl–Avrami–Kolmogorov model were used for determination of crystallization behaviour of the studied system. The frequency factor A = 5.2 × 1048 ± 9.6 × 1048 min−1, apparent activation energy E app = 1100 ± 10 kJ mol−1 and the Avrami coefficient m = 4 were determined. The linear temperature dependence of nucleation rate, reaction-controlled crystal growth interface and a 3-D crystal growth were confirmed in the studied system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang SF, Rao KK, Wu YCh, Wang YR, Hsu YF, Huang C. Synthesis and characterization of Ce3+:YAG phosphors by heterogeneous precipitation using different alumina sources. J Appl Ceram Technol. 2009;6:470.

    Article  CAS  Google Scholar 

  2. In JH, Lee HCh, Yoon MJ, Lee KK, Lee JW, Lee C. Synthesis of nano-sized YAG:Eu3+ phosphors in continuous supercritical water system. J Supercrit Fluids. 2007;40:389.

    Article  CAS  Google Scholar 

  3. Kang YC, Park SB, Lenggoro IW, Okuyama K. Preparation of non-aggregation YAG-Ce phosphor particles by spray pyrolysis. J Aerosol Sci. 1998;29:S911.

    Article  CAS  Google Scholar 

  4. Maiman TH. Optical and microwave-optical experiments in ruby. Phys Rev Lett. 1960;4:564.

    Article  Google Scholar 

  5. Wiliams JB, Dixon M. Assesment and control of imperfections in crystal for laser devices. Ceram Eng Sci Proc. 1990;11:1122.

    Article  Google Scholar 

  6. Belt RF, Puttbach RC, Lepore DA. Crystal growth and perfection of large Nd:YAG single crystal. J Cryst Growth. 1972;13/14:268.

    Article  Google Scholar 

  7. Kamaruddin WHA, Rohani MS, Sahar MR. The influence of power control on the diameter of Nd:YAG crystal. J Mater Sci Eng A. 2011;1:93.

    CAS  Google Scholar 

  8. Manalet R, Rahaman MN. Sol-gel processing and sintering of yttrium aluminium garnet (YAG) powders. J Mater Sci. 1996;31:3453.

    Article  Google Scholar 

  9. Sim SM, Keller KA. Phase formation in yttrium aluminium powders synthesized by chemical methods. J Mater Sci. 2000;35:713.

    Article  CAS  Google Scholar 

  10. Yang HK, Jeong JK. Synthesis, crystal growth and photoluminiscence properties of YAG: Eu phosphors by high-energy ball milling and solid state reaction. J Phys Chem C. 2010;114:226.

    Article  CAS  Google Scholar 

  11. Huang H, Gong H, Tang D, Tan OK. Synthesis and characterization of yttrium aluminium garnet by high-energy ball milling. Opt Mater. 2009;31:716.

    Article  CAS  Google Scholar 

  12. Won CW, Nersisyan HH, Won HI, Lee JH, Lee KH. Efficient solid-state route for the preparation of spherical YAG: Ce phosphor particles. J Alloys Compd. 2011;509:2621.

    Article  CAS  Google Scholar 

  13. Wu Z, Zhang X, He W, Du Y, Jia N, Xu G. Preparation of YAG: Ce spheroidal phase-pure particles by solvo-thermal method and their photoluminescence. J Alloys Compd. 2009;468:571.

    Article  CAS  Google Scholar 

  14. Basavalingu B, Vijaya Kumar MS, Girish HN, Yoda S. Hydrothermal synthesis and characterization of rare earth doped yttrium aluminium perovskite–R:YAlO3 (R = Nd, Eu, Er). J Alloys Compd. 2013;552:382.

    Article  CAS  Google Scholar 

  15. Li Y, Zhang J, Xiao Q, Zeng R. Synthesis of ultrafine spherical YAG:Eu3+ phosphors by MOCVD. Matter Lett. 2008;62:3787.

    Article  CAS  Google Scholar 

  16. Kang YC, Park SB, Lenggoro IW, Okuyama K. Preparation of non-aggregation YAG-Ce phosphor particles by spray pyrolysis. J Aerosol Sci. 1998;29:S911–2.

    Article  CAS  Google Scholar 

  17. Lee SH, Jung DS, Han JM, Koo HY, Kang YCh. Fine-sized Y3Al5O12:Ce phosphor powders prepared by spray pyrolysis from the spray solution with barium fluoride flux. J Alloys Compd. 2009;477:776.

    Article  CAS  Google Scholar 

  18. Suareza M, Fernandez A, Menendez JL, Torrecillas R. Production of dispersed nanometer sized YAG powders from alkoxide, nitrate and chloride precursors and spark plasma sintering to transparency. J Alloys Compd. 2010;493:391.

    Article  Google Scholar 

  19. Bhaskar A, Chang HY, Chang TH, Cheng SY. Microwave annealing of YAG: Ce nanophosphors. Mater Lett. 2012;78:124.

    Article  CAS  Google Scholar 

  20. Tong SH, Lu TC, Guo W. Synthesis of YAG powder by alcohol –water co-precipitation method. Mater Lett. 2007;61:4287.

    Article  CAS  Google Scholar 

  21. Wengui G, Yunsheng H, Weidong Z, Shusheng Z, Yuanhong L, Huaqiang H. A novel method for the synthesis of YAG: Ce phosphor. J Rare Earth. 2009;27:886.

    Article  Google Scholar 

  22. Jiao H, Ma Q, Be L, Liu Z, Wu Q. Low temperature synthesis of YAG: Ce phosphors by LiF assisted sol-gel combustion method. Powder Technol. 2010;198:229.

    Article  CAS  Google Scholar 

  23. Liu W, Zhang W, Li J, Zhang D, Pan Y. Preparation of spray-dried powders leading to Nd:YAG ceramics: the effect of PVB adhesive. Ceram Int. 2012;38:259.

    Article  CAS  Google Scholar 

  24. Reis ST, Kim CW, Brow RK, Ray CS. Nucleation and crystallization as induced by bending stress in lithium silicate glass fibers. J Non-Cryst Solids. 2004;348:1.

    Article  CAS  Google Scholar 

  25. Fabrichnaya O, Saenko I, Kriegel MJ, Seidel J, Zienert T, Savinykh G, Schreiber G. Experimental investigation of phase relations and thermodynamic properties in the system ZrO2, Eu2O3–Al2O3. J Eur Ceram Soc. 2016;36:1455.

    Article  CAS  Google Scholar 

  26. Reben M, Kosmal M, Ziabka M, Pichniarczyk P, Grelowska I. The influence of TiO2 and ZrO2 on microstructure and crystallization behavior of CRT glass. J Non-Cryst Solids. 2015;425:118.

    Article  CAS  Google Scholar 

  27. Fabrichnaya O, Lakiza SM, Kriegel MJ, Seidel M, Savinykh G, Schreiber G. New experimental investigations on phase relations in the Yb2O3–Al2O3 and ZrO2–Yb2O3–Al2O3 systems and assessment of thermodynamic parameters. J Eur Ceram Soc. 2015;35:2855.

    Article  CAS  Google Scholar 

  28. Serantoni M, Costa AL, Lanelli Ch, Esposito L. Crystallization behaviour of Yb-doped and undoped YAG nanoceramics synthesized by microwave-assisted urea precipitation. Ceram Int. 2014;40:11837.

    Article  CAS  Google Scholar 

  29. Vomacka P, Babushkin O. Crystallization of Y3Al5O12 from an oxynitride glass monitored by high-temperature X-ray difractometry. J Eur Ceram Soc. 1996;16:1263.

    Article  CAS  Google Scholar 

  30. Ramanujam P, Vaidhyanathan B, Binner JGP, Ghanizadeh S, Spacie C. Solvothermal nano YAG synthesis: mechanism and particle growth kinetics. J Supercrit Fluids. 2016;107:433.

    Article  CAS  Google Scholar 

  31. Ramanujam P, Vaidhyanathan B, Binner J, Anshuman A, Spacie C. A comparative study of the synthesis of nanocrystalline yttrium aluminium garnet using sol-gel and co-precipitation methods. Ceram Int. 2014;40:4179.

    Article  CAS  Google Scholar 

  32. Prnová A, Galusek D, Hnatko M, Kozánková J, Vávra I. Composites with eutectic microstructure by hot pressing of Al2O3–Y2O3 glass microspheres. Ceram-Silikáty. 2011;55:208.

    Google Scholar 

  33. Prnová A, Bodišová K, Klement R, Migát M, Veteška P, Škrátek M, Bruneel E, Driessche IV, Galusek D. Preparation and characterization of Yb2O3–Al2O3 glasses by the Pechini sol gel method combined with flame synthesis. Ceram Int. 2013;40:6179.

    Article  Google Scholar 

  34. Haliaková A, Prnová A, Klement R, Galusek D, Tuan WH. Flame-spraying synthesis of aluminate glasses in the system Al2O3–La2O3. Ceram Int. 2012;38:5543.

    Article  Google Scholar 

  35. Prnová A, Domanická A, Klement R, Kraxner J, Polovka M, Pentrák M, Galusek D, Šimurka P, Kozánková J. Er- and Nd-doped yttrium aluminosilicate glasses preparation and characterization. Opt Mater. 2011;33:1872.

    Article  Google Scholar 

  36. Zhang Z, Chen J, Liu H, Xiao C. Applicability of Kissinger model in nonisothermal crystallization assessed using a computer simulation method. J Therm Anal Calorim. 2014;117:783–7.

    Article  CAS  Google Scholar 

  37. Davim EJC, Senos AMR, Fernandes MHV. Non-isothermal crystallization kinetics of a Si–Ca–P–Mg bioactive glass. J Therm Anal Calorim. 2014;117:643–51.

    Article  CAS  Google Scholar 

  38. Kitheri J. Non-isothermal crystallization in BaO–Fe2O3–P2O5 glasses: a comparison with iron phosphate and Cs2O–Fe2O3–P2O5 glasses. J Therm Anal Calorim. 2017. doi:10.1007/s10973-017-6361-x.

  39. Srivastava AP, Srivastava D, Mazumdar B. Thermoanalytical study of crystallization process in metallic glass of Co69Fe3Si18B10. J Therm Anal Calorim. 2015;119:1353–61.

    Article  CAS  Google Scholar 

  40. Basaran C, Canikoglu N, Toplan HO, Toplan N. The crystallization kinetics of the MgO–Al2O3–SiO2–TiO2 glass ceramics system produced from industrial waste. J Therm Anal Calorim. 2016;125:695–701.

    Article  CAS  Google Scholar 

  41. Ozturk O, Gokcen T, Cavdar S, Koralay H, Tasci AT. A study on nucleation, crystallization kinetics, microstructure and mechanical properties of Ru–Bi partial substituted BSCCO glass ceramics. J Therm Anal Calorim. 2016;123:1073–82.

    Article  CAS  Google Scholar 

  42. Kumar S, Singh K. Glass transition and crystallization kinetics of Se98−x Cd2Inx (x = 0,2,6 and 10) glassy alloys. J Therm Anal Calorim. 2016;124:675–82.

    Article  CAS  Google Scholar 

  43. Choi HW, Yang YS. Non-isothermal crystallization kinetics of BaTiO3–(Li2B4O7–ZnO) glass. J Therm Anal Calorim. 2015;119:2171–8.

    Article  CAS  Google Scholar 

  44. Hou JG, Kumar RV, Qu YF, Krsmanovic D. Crystallization kinetics and densification of YAG nanoparticles from various chelating agents. Mater Res Bull. 2009;44:1786.

    Article  CAS  Google Scholar 

  45. Gong H, Tang DY, Huang H, Han MD, Sun T, Zhang J, Qin XP, Ma J. Crystallization kinetics and characterization of nanosized Nd:YAG by a modified sol-gel combustion process. J Cryst Growth. 2013;362:52.

    Article  CAS  Google Scholar 

  46. Plško A, Liška M, Pagáčová J. Crystallization kinetics of Al2O3–Yb2O3 glasses. J Therm Anal Calorim. 2012;108:505.

    Article  Google Scholar 

  47. Pechini MP. Method of preparing lead and alkaline-earth titanates and niobates and coating method using the same to form a capacitor. U. S. Pat. No. 3 330 697; 1967.

  48. Šesták J, Šimon P, editors. Thermal analysis of micro, nano- and non-crystalline materials: transformation, crystallization, kinetics and thermodynamics. Dordrecht: Springer; 2013. p. 225.

    Google Scholar 

  49. Zivanovic VD, Tosic MB, Grujic SR, Matijasevic SD, Stojanovic JN, Nikolic JD, Smiljanic SV. DTA study of the crystallization of Li2O–Nb2O5–SiO2–TiO2 glass. J Therm Anal Calorim. 2015;119:1653–61.

    Article  CAS  Google Scholar 

  50. Prajapati SR, Kasyap S, Patel AT, Pratap A. Non-isothermal crystallization kinetics of Zr52Cu18Ni14Al10Ti6 metallic glass. J Therm Anal Calorim. 2016;124:21–33.

    Article  CAS  Google Scholar 

  51. Svoboda R, Málek J. Non-isothermal crystallization kinetics of GeTe4 infrared glass. J Therm Anal Calorim. 2016;123:195–204.

    Article  CAS  Google Scholar 

  52. Svoboda R, Málek J. Crystallization mechanisms occurring in Se–Te glassy system. J Therm Anal Calorim. 2015;119:155–66.

    Article  CAS  Google Scholar 

  53. Svoboda R, Málek J. The effect of partial crystallinity on Se70Te30 crystallization kinetics. J Therm Anal Calorim. 2016;125:447–58.

    Article  CAS  Google Scholar 

  54. Avrami M. Kinetics of phase change. III. Granulation, phase change, and microstructure kinetics of phase change. J Chem Phys. 1941;9:177.

    Article  CAS  Google Scholar 

  55. Avrami M. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7:1103.

    Article  CAS  Google Scholar 

  56. Avrami M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212.

    Article  CAS  Google Scholar 

  57. Kolmogorov AE. On the statistic theory of metal crystallization (in Russian). Izv Akad Nauk SSSR Ser Mat. 1937;1:355.

    Google Scholar 

  58. Johnson WA, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall Pet Eng. 1939;135:416.

    Google Scholar 

  59. Tanaka H. Thermal analysis and kinetics of solid state reactions. Thermochim Acta. 1995;267:29.

    Article  CAS  Google Scholar 

  60. Šesták J, Šatava V, Wendlandt WW. The study of heterogeneous processes by thermal analysis. Thermochim Acta. 1973;7:333.

    Article  Google Scholar 

  61. Málek J. The applicability of Johnson–Mehl–Avrami model in thermal analysis of crystallization kinetics of glasses. Thermochim Acta. 1995;267:61.

    Article  Google Scholar 

  62. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetic Committee recommendation for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1.

    Article  CAS  Google Scholar 

  63. Johnson JB, Omland KS. Model selection in ecology and evolution. Trends Ecol Evol. 2004;19:101.

    Article  Google Scholar 

  64. Cavanaugh JE. Criteria for linear model selection based on Kullback’s symmetric divergence. Aust N Y Stat. 2004;46:257.

    Article  Google Scholar 

  65. Akaike H. Information theory and an extension of maximum likelihood principle. In: Petrov BN, Csáki F, editors. 2nd International symposium on information theory. Budapest: Akadémia Kiadó; 1973. p. 267.

  66. Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control AC. 1974;19:716.

    Article  Google Scholar 

  67. Kim HJ, Cavanaugh JE. Model selection criteria based on Kullback information measures for nonlinear regression. J Stat Plan Infer. 2005;134:332.

    Article  Google Scholar 

  68. Roduit B, Hartmann M, Folly P, Sarbach A, Baltensperger R. Prediction of thermal stability of materials by modified kinetic and model selection approaches based on limited amount of experimental points. Thermochim Acta. 2014;579:31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of this work by the project SAS-MOST JRP 2015/6, VEGA 1/0631/14 and APVV 0014-15 is gratefully acknowledged. This publication was created in the frame of the project “Centre of excellence for ceramics, glass, and silicate materials” ITMS code 262 201 20056, based on the Operational Program Research and Development funded from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Prnová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prnová, A., Plško, A., Valúchová, J. et al. Crystallization kinetics of glass microspheres with yttrium aluminium garnet (YAG) composition. J Therm Anal Calorim 131, 1115–1123 (2018). https://doi.org/10.1007/s10973-017-6690-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6690-9

Keywords

Navigation