Skip to main content
Log in

A study on nucleation, crystallization kinetics, microstructure and mechanical properties of Ru–Bi partial substituted BSCCO glass ceramics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study deals with the effects of Ru–Bi partial substitutions on the thermal, structural and mechanical properties of Bi1.8−x Ru x Pb0.2Sr2CaCu2O10+δ (x = 0.0, 0.025, 0.050, 0.075) system, produced by using glass ceramics method. The effects of Ru–Bi partial substitutions on glass transition, nucleation and crystallization temperature were analyzed via differential thermal analyzer (DTA). Besides, microstructure and micromechanical properties of Ru–Bi partially substituted BSCCO glass ceramics were also investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Vickers microhardness measurements. From the DTA results, nucleation kinetics were studied by using Ozawa, Augis–Bennett, Takhor and Kissinger equations. In addition to this, activation energies and Avrami parameters were also calculated. According to the results of the thermogravimetric analyses, the amount of oxidation was seen to be increased with increasing Ru concentration. Moreover, the lattice parameters, volume fractions and surface morphologies of our newly produced glass ceramics were investigated by XRD and SEM measurements, respectively. RISE behavior obtained from the microhardness measurements for all samples. Microhardness, elastic modulus, yield strength and fracture toughness values decreased with increasing Ru doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Omar AA, El-Shennawi AWA, El-Ghannam AR. Thermal expansion of glasses and corresponding glass–ceramics. J Mater Sci. 1991;26:6049–56.

    Article  CAS  Google Scholar 

  2. Sitarz M, Bulat K, Wajda A, Szumera M. Direct crystallization of silicate–phosphate glasses of NaCaPO4–SiO2 system. J Therm Anal Calorim. 2013;113:1363–8.

    Article  CAS  Google Scholar 

  3. Wers E, Oudadesse H. Thermal behaviour and excess entropy of bioactive glasses and Zn-doped glasses. J Therm Anal Calorim. 2014;115:2137–44.

    Article  CAS  Google Scholar 

  4. Sakamoto A, Yamamoto S. Glass ceramics: engineering principles and applications. Int J Appl Glass Sci. 2010;1:237–47 (Special Issue: Special Applications).

    Article  CAS  Google Scholar 

  5. Koralay H, Hicyilmaz O, Cavdar S, Asikuzun E, Tasci AT, Ozturk O. Effect of Zn content on microstructure and mechanical performance in Bi1.8Sr2Ca2Cu3.2−x Zn x O10+δ glass ceramic. J Mater Sci Mater Electron. 2014;25:3116–26.

    Article  CAS  Google Scholar 

  6. Çavdar Ş, Koralay H, Altındal Ş. Effect of vanadium substitution on the dielectric properties of glass ceramic Bi-2212 superconductor. J Low Temp Phys. 2011;164:102–14.

    Article  Google Scholar 

  7. Uzun O, Kölemen U, Çelebi S, Güçlü N. Modulus and hardness evaluation polycrystalline superconductors by dynamic microindentation technique. J Eur Ceram Soc. 2005;25:969–77.

    Article  CAS  Google Scholar 

  8. Kölemen U, Çelebi S, Karal H, Öztürk A, Çevik U, Nezir S, Görür O. Superconducting and Vickers hardness properties of ZnO added YBCO bulk superconductors. Phys Status Solidi (b). 2004;241:274–83.

    Article  Google Scholar 

  9. Asikuzun E, Ozturk O, Cetinkara HA, Yildirim G, Varilci A, Yılmazlar M, Terzioglu C. Vickers hardness measurements and some physical properties of Pr2O3 doped Bi-2212 superconductors. J Mater Sci Mater Electron. 2012;23:1001–10.

    Article  CAS  Google Scholar 

  10. Matsushita K, Sakka S. Kinetic study on non-isothermal crystallization of glass by thermal analysis. J Non-Cryst Solids. 1980;741(38–39):741–6.

    Article  Google Scholar 

  11. Prasad NS, Varma KBR. Crystallization kinetics of the LiBO2–Nb2O5 glass using differential thermal analysis. J Am Ceram Soc. 2005;88:357–61.

    Article  CAS  Google Scholar 

  12. Araujo EB, Idalgo E, Moraes APA, Filho SAG, Filho MJ. Crystallization kinetics and thermal properties of 20Li2O–80TeO2 glass. J Mater Res Bull. 2009;44:1596–600.

    Article  CAS  Google Scholar 

  13. Yukimitu K, Oliveira RC, Araujo EB, Moraes JCS, Avanci LH. DSC studies on crystallization mechanisms of tellurite glasses. J Thermochim Acta. 2005;426:157–61.

    Article  CAS  Google Scholar 

  14. Davim EJC, Senos AMR, Fernandes MHV. Non-isothermal crystallization kinetics of a Si–Ca–P–Mg bioactive glass. J Therm Anal Calorim. 2014;117:643–65.

    Article  CAS  Google Scholar 

  15. Zivanovic VD, Tosic MB, Grujic SR, Matijasevic SD, Stojanovic JN, Nikolic JD, Smiljanic SV. DTA study of the crystallization of Li2O–Nb2O5–SiO2–TiO2 glass. J Therm Anal Calorim. 2015;119:1653–61.

    Article  CAS  Google Scholar 

  16. Xie X, Gao H. Calorimetric studies on the crystallization of Li2S–B2O3 glasses. J Non-Cryst Solids. 1998;240:166–76.

    Article  CAS  Google Scholar 

  17. Arslan A, Koralay H, Çavdar Ş, Günen A. Crystallization kinetic studies on Bi1.75Pb0.25Sr2Ca2Cu3−x Sn x O δ glass–ceramic by using non-isothermal technique. J Non-Cryst Solids. 2012;358:1190–5.

    Article  CAS  Google Scholar 

  18. Avrami M. Kinetics of phase changes, 1. General theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  19. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

  20. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1703.

    Article  Google Scholar 

  21. Takhor RL. Advances in nucleation and crystallization of glasses. Symposium of the Glass Division of the American Ceramic Society. Columbus; 1972. p. 166–72.

  22. Augis JA, Bennett JD. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal. 1978;13:283–92.

    Article  CAS  Google Scholar 

  23. Ozturk O, Erdem M, Asikuzun E, Yildiz O, Yildirim G, Varilci A, Terzioglu C. Investigation of indentation size effect (ISE) and micro-mechanical properties of Lu added Bi2Sr2CaCu2O y ceramic superconductors. J Mater Sci Mater Electron. 2013;24:230–8.

    Article  CAS  Google Scholar 

  24. Koralay H, Cavdar S, Aksan MA. Kinetics of non-isothermal crystallization of Bi3Sr2Ca2Cu3−x Sn x O10+δ glass ceramics. Phys B Condens Matter. 2010;405:4801–5.

    Article  CAS  Google Scholar 

  25. Cavdar S, Deniz E, Koralay H, Ozturk O, Erdem M, Gunen A. The effect of PbSe addition on the mechanical properties of Bi-2212 superconductors. J Supercond Nov Magn. 2012;25:2297–307.

    Article  CAS  Google Scholar 

  26. Abe Y. Superconducting glass–ceramics in Bi–Sr–Ca–Cu–O: fabrication and its application. Singapore: World Scientific Publishing Co. Pte. Ltd.; 1997. p. 3–12.

    Book  Google Scholar 

  27. Koralay H, Yakuphanoglu F, Cavdar S, Günen A, Aksu E. Crystallization kinetics of Bi1.7V0.3Sr2Ca2Cu3O x glass–ceramic. Phys B Condens Matter. 2005;355:64–71.

    Article  CAS  Google Scholar 

  28. Aksan MA, Yakinci ME, Balci Y. Thermal analysis study of Bi2Sr2Ca2Cu3−x Er x O10+δ glass–ceramic system. J Therm Anal Calorim. 2005;81:417–23.

    Article  CAS  Google Scholar 

  29. Safran S, Kılıç A, Asikuzun E, Kılıçarslan E, Ozturk O, Gencer A. Influence of different boron precursors on superconducting and mechanical properties of MgB2. J Mater Sci Mater Electron. 2014;25:2737–47.

    Article  CAS  Google Scholar 

  30. Arda L, Ozturk O, Asikuzun E, Ataoglu S. Structural and mechanical properties of transition metals doped ZnMgO nanoparticles. Powder Technol. 2013;235:479–84.

    Article  CAS  Google Scholar 

  31. Koralay H, Arslan A, Cavdar S, Ozturk O, Asikuzun E, Gunen A, Tasci AT. Structural and mechanical characterization of Bi1.75Pb0.25Sr2Ca2Cu3−x Sn x O10+y superconductor ceramics using Vickers microhardness test. J Mater Sci Mater Electron. 2013;24:4270–8.

    Article  CAS  Google Scholar 

  32. Tosun M, Ataoglu S, Arda L, Ozturk O, Asikuzun E, Akcan D, Cakiroglu O. Structural and mechanical properties of ZnMgO nanoparticles. Mater Sci Eng A. 2014;590:416–22.

    Article  CAS  Google Scholar 

  33. Awad R, Abou-Aly AI, Kamal M, Anas M. Mechanical properties of (Cu0.5Tl0.5)-1223 substituted by Pr. J Supercond Nov Magn. 2011;24:1947–56.

    Article  CAS  Google Scholar 

  34. Sangwal K. On the reverse indentation size effect and microhardness measurement of solids. Mater Chem Phys. 2000;63:145–52.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ozturk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk, O., Gokcen, T., Cavdar, S. et al. A study on nucleation, crystallization kinetics, microstructure and mechanical properties of Ru–Bi partial substituted BSCCO glass ceramics. J Therm Anal Calorim 123, 1073–1082 (2016). https://doi.org/10.1007/s10973-015-5028-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5028-8

Keywords

Navigation