Skip to main content
Log in

Applicability of Kissinger model in nonisothermal crystallization assessed using a computer simulation method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The Kissinger method is one of the most popular approaches for determining kinetic parameters from the nonisothermal processes. The applicability of the Kissinger model in describing the nonisothermal crystallization was verified using the data of the simulated experiments with the given crystallization mechanism. The results show that the data of the Monte Carlo experiments for nonisothermal crystallization can be used to evaluate the nonisothermal crystallization model. The Kissinger model can be used to estimate the parameter of the activation energy of the nonisothermal crystallization from the DSC curves with the different heating rates, but unsuitable to obtain the parameter from the DSC curves with the different cooling rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.

    Article  CAS  Google Scholar 

  2. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer. 1978;19:1142–4.

    Article  CAS  Google Scholar 

  3. Harnisch K, Lanzenberger R. Determination of the avrami exponent by non-isothermal analyses. J Non-Cryst Solids. 1982;53:235–45.

    Article  CAS  Google Scholar 

  4. Harnisch K, Muschik H. Determination of the Avrami exponent of partially crystallized polymers by DSC-(DTA) analyses. Coll Polym Sci. 1983;261:908–13.

    Article  CAS  Google Scholar 

  5. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  6. Svoboda R, Cicmanec P, Malek J. Kissinger equation versus glass transition phenomenology. J Therm Anal Calorim. 2013. doi:10.1007/s10973-012-2892-3.

    Google Scholar 

  7. Patel AT, Pratap A. Study of kinetics of glass transition of metallic glasses. J Therm Anal Calorim. 2012;110:567–71.

    Article  CAS  Google Scholar 

  8. Ariffin A, Ariff ZM, Jikan SS. Evaluation on nonisothermal crystallization kinetics of polypropylene/kaolin composites by employing Dobreva and Kissinger methods. J Therm Anal Calorim. 2011;103:171–7.

    Article  CAS  Google Scholar 

  9. Biswas K, Sontakke AD, Majumder M, Annapurna K. Nonisothermal crystallization kinetics and microstructure evolution of calcium lanthanum metaborate glass. J Therm Anal Calorim. 2010;101:143–51.

    Article  CAS  Google Scholar 

  10. Svoboda R, Malek J. Crystallization kinetics of amorphous Se. J Therm Anal Calorim. 2013. doi:10.1007/s10973-012-2922-1.

    Google Scholar 

  11. Sirisinha K, Boonkongkaew M, Kositchaiyong S. The effect of silane carriers on silane grafting of high-density polyethylene and properties of crosslinked products. Polym Test. 2010;29:958–65.

    Article  CAS  Google Scholar 

  12. Yan Q-L, Zeman S, Selesovsky J, Svoboda R, Elbeih A. Thermal behavior and decomposition kinetics of formex-bonded explosives containing different cyclic nitramines. J Therm Anal Calorim. 2013;111:1419–30.

    Article  CAS  Google Scholar 

  13. Zabihi O, Omrani A, Rostami AA. Thermo-oxidative degradation kinetics and mechanism of the system epoxy nanocomposite reinforced with nano-Al2O3. J Therm Anal Calorim. 2012;108:1251–60.

    Article  CAS  Google Scholar 

  14. Liu XW, Feng YL, Li HR, zhang P, Wang P. Thermal decomposition kinetics of magnesite from thermogravimetric data. J Therm Anal Calorim. 2012;107:407–12.

    Article  CAS  Google Scholar 

  15. Hao W, Hu J, Chen L, Zhang J, Xing L, Yang W. Isoconversional analysis of non-isothermal curing process of epoxy resin/epoxide polyhedral oligomeric silsesquioxane composites. Polym Test. 2011;30:349–55.

    Article  CAS  Google Scholar 

  16. Supriya N, Catherine KB, Rajeev R. DSC-TG studies on kinetics of curing and thermal decomposition of epoxy: ether amine systems. J Therm Anal Calorim. 2012. doi:10.1007/s10973-012-2805-5.

    Google Scholar 

  17. Schaaf E, Zimmermann H. Non-isothermal crystallisation kinetics of nucleated poly(ethylene terephthalate). J Therm Anal Calorim. 1988;33:1053–8.

    Article  Google Scholar 

  18. Hu X, Lesser AJ. Non-isothermal crystallization of poly(trimethylene terephthalate)/clay nanocomposites. Macromol Chem Phys. 2004;205:574–80.

    Article  CAS  Google Scholar 

  19. Kim SH, Ahn SH, Hirai T. Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly(ethylene 2,6-naphthalate). Polymer. 2003;44:5625–34.

    Article  CAS  Google Scholar 

  20. Krishnan PSG, He C. Synthesis, characterization, and polymerization kinetics of novel ladder-like polysilsesquioxanes containing side-chain propyl methacrylate groups. Macromol Chem Phys. 2003;204:531–9.

    Article  CAS  Google Scholar 

  21. Xu W, Liang G, Wang W, Tang S, He P, Pan W-P. Poly(propylene)-poly(propylene)-grafted maleic anhydride-organic montmorillonite (PP–PP-g-MAH-Org-MMT) nanocomposites. II. Nonisothermal crystallization kinetics. J Appl Polym Sci. 2003;88:3093–9.

    Article  CAS  Google Scholar 

  22. Chiu FC, Fu Q, Peng Y, Shih HH. Crystallization kinetics and melting behavior of metallocene short-chain branched polyethylene fractions. J Polym Sci Part B. 2002;40:325–37.

    Article  CAS  Google Scholar 

  23. Chiu FC, Peng CG, Fu Q. Non-isothermal crystallization and multiple melting behavior of syndiotactic polystyrene: pre-melting temperature effects. Polym Eng Sci. 2000;40:2397–406.

    Article  CAS  Google Scholar 

  24. El-Shahawy MA. Phase transformations of some poly(vinyl alcohol)-NiCl2 composites. Polym Int. 2003;52:1919–24.

    Article  CAS  Google Scholar 

  25. Zhang ZY, Xiao CF, Dong ZZ. Comparison of the Ozawa and modified Avrami models of polymer crystallization under nonisothermal conditions using a computer simulation method. Thermochim Acta. 2007;466:22–8.

    Article  CAS  Google Scholar 

  26. Vyazovkin S. Is the Kissinger equation applicable to the processes that occur on cooling? Macromol Rapid Comm. 2002;23:771–5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiying Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Chen, J., Liu, H. et al. Applicability of Kissinger model in nonisothermal crystallization assessed using a computer simulation method. J Therm Anal Calorim 117, 783–787 (2014). https://doi.org/10.1007/s10973-014-3751-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3751-1

Keywords

Navigation