Skip to main content
Log in

Crystallization kinetics of binary Yb2O3–Al2O3 glass

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The ytterbium aluminum garnet composition YbAG (62.5 mol.% Al2O3, 37.5 mol.% Yb2O3) was prepared in the form of glass microspheres by flame synthesis. Precursor powder for flame synthesis with high homogeneity was prepared by modified sol–gel Pechini method. XRD pattern of prepared glass microspheres indicated predominantly amorphous nature of the sample. Detailed study of morphology of the microspheres by scanning electron microscopy revealed the presence of a small fraction of partially or fully crystallized microspheres. The high-temperature X-ray powder diffraction analysis (HT XRD) was carried out in the temperature interval 750–1450 °C: The temperature dependence of phase composition was determined. Crystallization of Yb3Al5O12—ytterbium aluminum garnet phase—was observed in the temperature range 900–1200 °C. The DSC analysis with heating rates 2, 4, 6, 8, 10 °C min−1 in temperature interval 25–1200 °C was performed in N2 atmosphere to study thermal behavior and crystallization kinetics of prepared glass microspheres. The two exothermic effects at 918 and 939 °C were observed, which were attributed to Yb3Al5O12 crystallization. The crystallization kinetics of prepared sample was examined with the use of JMAK model, and the kinetic triplet—frequency factor A = (1.8 ± 2.2) 10+28 min−1 (for the first peak), A = (1.2 ± 1.6) 10+55 min−1 (for the second peak), apparent activation energy Eapp = (6.4 ± 0.1) 10+02 kJ mol−1 (for the first peak), Eapp = (1.3 ± 0.1) 10+03 kJ mol−1 (for the second peak) and the Avrami coefficient m = 3 (for the first peak) and m = 2 (for the second peak)—was determined using RSS, R2adj , AIC and WAIC criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nørby P, Jensen KMO, Lock N, Christensen M, Iversen BB. Continuous flow supercritical water synthesis and temperature-dependent defect structure analysis of YAG and YbAG nanoparticles. Cryst Growth Des. 2016;16:2646–52.

    Article  Google Scholar 

  2. Xu X, Zhao Z, Song P, Jiang B, Zhou G, Xu J, et al. Optical spectroscopy of Yb3Al5O12 single crystal. Spectrochim Acta Part A Mol Biomol Spectrosc. 2005;62:645–8.

    Article  Google Scholar 

  3. Li C, Xu J, Liu W, Lin H, Liu Y, Wang D, et al. Synthesis and characterization of Er:Yb3Al5O12 nanopowder. Russ J Phys Chem A. 2015;89:2263–6.

    Article  CAS  Google Scholar 

  4. Marquardt H, Speziale S, Jahn S, Ganschow S, Schilling FR. Single-crystal elastic properties of (Y,Yb)3Al5O12. J Appl Phys. 2009;106:093519.

    Article  Google Scholar 

  5. Prnová A, Plško A, Valúchová J, Švančárek P, Klement R, Michálková M, et al. Crystallization kinetics of yttrium aluminate glasses. J Therm Anal Calorim. 2018;133:227–36.

    Article  Google Scholar 

  6. Clarke DR, Levi CG. Materials design for the next generation thermal barrier coatings. Annu Rev Mater Res. 2003;33:383–417.

    Article  CAS  Google Scholar 

  7. Zhou Y, Xiang H, Feng Z. Theoretical investigation on mechanical and thermal properties of a promising thermal barrier material: Yb3Al5O12. J Mater Sci Technol. 2014;30:631–8.

    Article  CAS  Google Scholar 

  8. Moncorgé R, Camy P, Doualan JL, Braud A, Margerie J, Ramirez LP, et al. Pure and Yb3+ doped fluorites (Ca, Sr, Ba)F2: a renewal for the future high intensity laser chains. J Lumin. 2013;133:276–81.

    Article  Google Scholar 

  9. Chénais S, Druon F, Forget S, Balembois F, Georges P. On thermal effects in solid-state lasers: the case of ytterbium-doped materials. Prog Quantum Electron. 2006;30:89–153.

    Article  Google Scholar 

  10. Prnová A, Bodišová K, Klement R, Migát M, Veteška P, Škrátek M, et al. Preparation and characterization of Yb2O3–Al2O3 glasses by the Pechini sol-gel method combined with flame synthesis. Ceram Int. 2014;40:6179–84.

    Article  Google Scholar 

  11. Wilding MC. Aluminates. In: Ceramic and glass materials. Boston: Springer; 2008. p. 49–70.

  12. Dubnikova N, Garskaite E, Beganskiene A, Kareiva A. Sol–gel synthesis and characterization of sub-microsized lanthanide Ho, Tm, Yb, Lu aluminium garnets. Opt Mater Amst. 2011;33:1179–84.

    Article  CAS  Google Scholar 

  13. Wu Y, Li J, Pan Y, Liu Q, Guo J. Synthesis of nano-sized Yb3Al5O12 powders by the urea co-precipitation method. Ceram Int. 2009;35:25–7.

    Article  CAS  Google Scholar 

  14. Tratsiak Y, Bokshits Y, Korjik M, Tamulaitis G, Trusova E, Vaitkevičius A. Garnet-based complex substituted glass ceramic materials. Radiat Meas. 2019;122:97–100.

    Article  CAS  Google Scholar 

  15. Tratsiak Y, Trusova E, Bokshits Y, Korjik M, Vaitkevičius A, Tamulaitis G. Garnet-type crystallites, their isomorphism and luminescence properties in glass ceramics. Cryst Eng Commun. 2019;21:687–93.

    Article  CAS  Google Scholar 

  16. Rosenflanz A, Frey M, Endres B, Anderson T, Richards E, Schardt C. Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides. Nature. 2004;430:761–4.

    Article  CAS  Google Scholar 

  17. Reis ST, Kim CW, Brow RK, Ray CS. Nucleation and crystallization as induced by bending stress in lithium silicate glass fibers. J Non-Cryst Solids. 2004;348:1.

    Article  CAS  Google Scholar 

  18. Reben M, Kosmal M, Ziabka M, Pichniarczyk P, Grelowska I. The influence of TiO2 and ZrO2 on microstructure and crystallization behaviour of CRT glass. J Non-Cryst Solids. 2015;425:118.

    Article  CAS  Google Scholar 

  19. Ray CS, Day DE. Identifying internal and surface crystallisation by differential thermal analysis for the glass-to-crystal transformation. Thermochim Acta. 1996;280(281):163–74.

    Article  Google Scholar 

  20. McMillan PF, Wilding MC. Direct density determination of low-and high density glassy polymorphs following a liquid–liquid phase transition in Y2O3–Al2O3 supercooled liquids. J Non-Cryst Solids. 2008;354:1015–25.

    Article  CAS  Google Scholar 

  21. Reis ST, Pascual MJ, Brow RK, Ray CS, Zhang T. Crystallisation and processing of SOFC sealing glasses. J Non-Cryst Solids. 2010;356:3009–12.

    Article  CAS  Google Scholar 

  22. Li W, Mitchell BS. Nucleation and crystallisation in calcium aluminate glasses. J Non-Cryst Solids. 1999;255:199–207.

    Article  CAS  Google Scholar 

  23. Zahedi M, Roohpour N, Ray AK. Kinetic study of crystallisation of sol-gel derived calcia–alumina binary compounds. J Alloys Compd. 2014;582:277–82.

    Article  CAS  Google Scholar 

  24. Dohnalová Ž, Šulcová P, Gorodylova N. Study of ceramic pigments based on cobalt doped Y2O3–Al2O3 system. J Therm Anal Calorim. 2014;116:647–54.

    Article  Google Scholar 

  25. Černá A, Chromčíková M, Macháček J, Hruška B, Liška M. Viscosity and configuration entropy of glasses for CHROMPIC vitrification. J Therm Anal Calorim. 2018;133:365–70.

    Article  Google Scholar 

  26. McGilvery CM, Gent SD, Payzant EA, MacKenzie M, Craven AJ, McComb DV. Investigation of crystallization processes from hafnium silicate powders prepared from an oxychloride sol–gel. J Am Ceram Soc. 2012;95:3985–91.

    Article  CAS  Google Scholar 

  27. Serantoni M, Costa AL, Lanelli Ch, Esposito L. Crystallization behaviour of Yb-doped and undoped YAG nanoceramics synthesized by microwave-assisted urea precipitation. Ceram Int. 2014;40:11837–44.

    Article  CAS  Google Scholar 

  28. Prnová A, Klement R, Bodišová K, Valúchová J, Galusek D, Bruneel E, et al. Thermal behaviour of yttrium aluminate glasses studied by DSC, high-temperature X-ray diffraction, SEM and SEM–EDS. J Therm Anal Calorim. 2017;128:1407–15.

    Article  Google Scholar 

  29. Prnová A, Plško A, Klement R, Valúchová J, Haladejová K, Švančárek P, et al. Crystallization kinetics of binary La2O3–Al2O3 glass. J Non-Cryst Solids. 2018;501:55–61.

    Article  Google Scholar 

  30. Prnová A, Plško A, Valúchová J, Haladejová K, Klement R, Galusek D. Crystallization kinetics of glass microspheres with yttrium aluminium garnet (YAG) composition. J Therm Anal Calorim. 2018;131:1115–23.

    Article  Google Scholar 

  31. Pechini MP. Method of preparing lead and alkaline-earth titanates and niobates and coating method using the same to form a capacitor. U.S. Patent No. 3,330,697, 1967.

  32. Šesták J, Šimon P, editors. Thermal analysis of micro, nano- and non-crystalline materials: transformation, crystallization, kinetics and thermodynamics. London: Springer; 2013. p. 225–46.

    Google Scholar 

  33. Kolmogorov AE. On the statistic theory of metal crystallization. Izv Akad Nauk SSSR Ser Mat. 1937;1:355–9 (in Russian).

    Google Scholar 

  34. Johnson WA, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall Pet Eng. 1939;135:416–58.

    Google Scholar 

  35. Tanaka H. Thermal analysis and kinetics of solid state reactions. Thermochim Acta. 1995;267:29–44.

    Article  CAS  Google Scholar 

  36. Šesták J, Šatava V, Wendlandt WW. The study of heterogeneous processes by thermal analysis. Thermochim Acta. 1973;7:333–556.

    Article  Google Scholar 

  37. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetic Committee recommendation for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  38. Akaike H. Information theory and an extension of maximum likelihood principle. In: Petrov BN, Csáki F, editors. 2nd international symposium on information theory. Budapest: Akadémia Kiadó; 1973. p. 267–81.

  39. Akaike H. A new look at the statistical model identification. IEEE Trans Automat Control. 1974;19:716–23.

    Article  Google Scholar 

  40. Kim HJ, Cavanaugh JE. Model selection criteria based on Kullback information measures for nonlinear regression. J Stat Plan Infer. 2005;134:332–49.

    Article  Google Scholar 

  41. Johnson JB, Omland KS. Model selection in ecology and evolution. Trends Ecol Evol. 2004;19:101–8.

    Article  Google Scholar 

  42. Roduit B, Hartmann M, Folly P, Sarbach A, Baltensperger R. Prediction of thermal stability of materials by modified kinetic and model selection approaches based on limited amount of experimental points. Thermochim Acta. 2014;579:31–9.

    Article  CAS  Google Scholar 

  43. Fabrichnaya O, Seifert HJ. Thermodynamic assessment of the ZrO2–Yb2O3–Al2O3 system. CALPHAD Comput Coupl Phase Diagr Termochem. 2010;34:206–11.

    CAS  Google Scholar 

Download references

Acknowledgements

This paper is a part of dissemination activities of project FunGlass. This project has received funding from the European Union’s Horizon 2020, research and innovation programme under Grant Agreement No. 739566. The financial support of this work by the projects APVV 0014-15, APVV-17-0049, VEGA 1/0527/18, VEGA 2/0088/16, VEGA 1/0064/18 and VEGA 2/0026/17 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Prnová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prnová, A., Plško, A., Valúchová, J. et al. Crystallization kinetics of binary Yb2O3–Al2O3 glass. J Therm Anal Calorim 142, 2141–2148 (2020). https://doi.org/10.1007/s10973-020-10049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10049-7

Keywords

Navigation