Skip to main content
Log in

Crystallization kinetics of gehlenite glass microspheres

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The glass of gehlenite composition was prepared by flame synthesis in the form of microspheres. The powder precursor was synthesised by standard solid-state reaction method using SiO2, Al2O3 and CaCO3. The prepared glasses were characterized from the point of view of surface morphology, phase composition and thermal properties by optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC), respectively. The prepared samples contained only completely re-melted spherical particles. SEM did not reveal any features indicating the presence of crystalline phases. However, traces of crystalline gehlenite were detected by XRD. The high-temperature XRD measurements (HT XRD) were carried out to identify the phase evolution during glass crystallization. In the studied temperature range, gehlenite phase was identified as the main crystalline phase. Non-isothermal DSC analysis of prepared glass microspheres was carried out from room temperature up to 1200 °C at five different heating rates: 2, 4, 6, 8 and 10 °C/min to determine the thermal properties of microspheres. In order to study the crystallization kinetics, the DSC curves were transformed into dependence of fractional extent of crystallization (α) on temperature. The Johnson–Mehl–Avrami–Kolmogorov model was found to be suitable for description of crystallization kinetics. Frequency factor A = 5.56 × 1029 ± 1.73 × 1029 min−1, apparent activation energy Eapp = 722 ± 3 kJ mol−1 and the Avrami coefficient m = 2 were determined. In the studied system, the linear temperature dependence of nucleation rate, diffusion controlled crystal growth interface and a 2D crystal growth were confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

[Reprinted from 4]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu H, Hu Y, Ju G, Chen L, Wang X, Yang Z. Photoluminescence and thermoluminescence of Ce3+ and Eu2+ in Ca2Al2SiO7 matrix. J Lumin. 2011;131:2441–5. https://doi.org/10.1016/j.jlumin.2011.06.024.

    Article  CAS  Google Scholar 

  2. Proverbio M, Dapiaggi M, Artioli G. Thermal expansion and excess properties of akermanite-gehlenite synthetic solid solution series. Mat Sci Forum. 2004;443–444:401–6. https://doi.org/10.4028/www.scientific.net/MSF.443-444.401.

    Article  Google Scholar 

  3. Yang P, et al. Ca2Al2SiO7:Bi3+, Eu3+, Tb3+: A potential single-phased tunable-color-emitting phosphor. J Lumin. 2013;135:206–10. https://doi.org/10.1016/j.jlumin.2012.10.015.

    Article  CAS  Google Scholar 

  4. Lejus AM, Pelletier-Allard N, Pelletier R, Vivien D. Site selective spectroscopy of Nd ions in gehlenite (Ca2Al2SiO7), a new laser material. Opt Mater. 1996;6:129–37. https://doi.org/10.1016/0925-3467(96)00041-9

    Article  CAS  Google Scholar 

  5. Ptáček P, Opravil T, Šoukal F, Havlica Holešinský R. Kinetics and mechanism of formation of gehlenite, Al-Si spinel and anorthite from mixture of kaolinite and calcite. Solid State Sci. 2013;26:53–8. https://doi.org/10.1016/j.solidstatessciences.2013.09.014.

    Article  Google Scholar 

  6. Viana B, Lejus AM, Saber D, Duxin N, Vivien D. Optical properties and energy transfer among Nd3+ in Nd:Ca2Al2SiO7 crystals for diode puped lasers. Opt Mater. 1994;3:307–16. https://doi.org/10.1016/0925-3467(94)90043-4.

    Article  CAS  Google Scholar 

  7. Kodama N, Tanii Y, Yamaga M. Optical properties of long-lasting phosphorescent crystals Ce3 + -doped Ca2Al2SiO7 and CaYAl3O7. J Lumin. 2000;87–89:1076–8. https://doi.org/10.1016/S0022-2313(99)00543-8.

    Article  Google Scholar 

  8. Yang P, Yu X, Yu H, Jiang T, Zhou D, Qiu J. Effects of crystal field on photoluminescence properties of Ca2Al2SiO7:Eu2+ phosphors. J Rare Earths. 2012;30:1208–12. https://doi.org/10.1016/S1002-0721(12)60207-5.

    Article  CAS  Google Scholar 

  9. Majerova M, Klement R, Prnova A, Kraxner J, Bruneel E, Galusek D. Crystallization and VIS-NIR luminescence of Bi-doped gehlenite glass. R Soc Open Sci. 2018;5:181667. https://doi.org/10.1098/rsos.181667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moesgaard M, Yue Y. Compositional dependence of fragility and glass forming ability of calcium aluminosilicate melts. J Non-Cryst Solids. 2009;355:867–73. https://doi.org/10.1016/j.jnoncrysol.2009.04.004.

    Article  CAS  Google Scholar 

  11. Bernardo E, Fiocco L, Prnová A, Klement R, Galusek D. Gehlenite: Eu3+ phosphors from a silicone resin and nano-sized fillers. Opt Mater. 2014;36:1243–9. https://doi.org/10.1016/j.optmat.2014.03.007.

    Article  CAS  Google Scholar 

  12. Shih SJ, et al. Preparation and characterization of Eu-doped gehlenite glassy particles using spray pyrolysis. Ceram Int. 2016;42:11324–9. https://doi.org/10.1016/j.ceramint.2016.04.053.

    Article  CAS  Google Scholar 

  13. Rosenflanz A, Frey M, Endres B, Anderson T, Richards E, Schardt C. Bulk glasses and ultrahard nanoceramics based on alumina and rare-earth oxides. Nature. 2004;430:761–4. https://doi.org/10.1038/nature02729.

    Article  CAS  PubMed  Google Scholar 

  14. Yigiter AO, Atakol MK, Aksu ML, Atakol O. Thermal characterization and theoretical and experimental comparison of poryl chloride derivatives of heterocyclic energetic compounds. J Therm Anal Calorim. 2017;127:2199–213. https://doi.org/10.1007/s10973-016-5766-2.

    Article  CAS  Google Scholar 

  15. Pawlikowska M, Piatkowska M, Tomaszewicz E. Synthesis and thermal stability of rare-earths molybdates and tungstates with fluorite- and scheelite-type structure. J Therm Anal Calorim. 2017;130:69–76. https://doi.org/10.1007/s10973-017-6127-5.

    Article  CAS  Google Scholar 

  16. Rahvard MM, Tamizifar M, Boutorabi SM. Non-isothermal crystallization kinetics and fragility of Zr56Co28Al16 and Zr56Co22Cu6Al16 bulk metallic glasses. J Therm Anal Calorim. 2018;134:903–14. https://doi.org/10.1007/s10973-018-7367-8.

    Article  CAS  Google Scholar 

  17. Kalenda P, Koudelka L, Mošner P, Beneš L, Drobná H. Thermoanalytical study and crystallization of Ba(PO3)2–WO3 glasses. J Therm Anal Calorim. 2019;137:1911–8. https://doi.org/10.1007/s10973-019-08115-w.

    Article  CAS  Google Scholar 

  18. Koga N, Kikuchi S. Thermal behavior of perlote concrete used in a sodium-cooled fast reactor. J Therm Anal Calorim. 2019;138:983–96. https://doi.org/10.1007/s10973-019-08351-0.

    Article  CAS  Google Scholar 

  19. Laboureur D, Glabeke G, Gouriet JB. Aluminum nanoparticles oxidation by TGA/DSC. J Therm Anal Calorim. 2019;137:1199–210. https://doi.org/10.1007/s10973-019-08058-2.

    Article  CAS  Google Scholar 

  20. Dande A, et al. DSC analysis of human synovial fluid samples in the diagnostics of non-septic and septic arthritis. J Therm Anal Calorim. 2017;130:1249–52. https://doi.org/10.1007/s10973-017-6179-6.

    Article  CAS  Google Scholar 

  21. Chen J, He F, Xiao Y, Xie M, Xie J, Zhang W, Shi J. Effect of Al/Si ratio on the crystallization properties and structure of mold flux. Con Build Mat. 2019;216:19–28. https://doi.org/10.1016/j.combuildmat.2019.04.261.

    Article  CAS  Google Scholar 

  22. Mukherjee DP, Das SK. SiO2–Al2O3–CaO glass-ceramics: effects of CaF2 on crystallization, microstructure and properties. Ceram Int. 2012;39:571–8. https://doi.org/10.1016/j.ceramint.2012.06.066.

    Article  CAS  Google Scholar 

  23. Niculescu M, et al. Thermal and spectroscopic analysis of Co(II)-Fe(III) polyglyoxylate obtained through reaction of etylene glykol with metal nitrates. J Therm Anal Calorim. 2018;131:127–36. https://doi.org/10.1007/s10973-016-6079-1.

    Article  CAS  Google Scholar 

  24. Lu J, Li Y, Zou Ch, Liu Z, Wang C. Effect of heating rate on the sinterability, crystallization, and mechanical properties of sintered glass-ceramics from granite waste. J Therm Anal Calorim. 2019;135:1977–85. https://doi.org/10.1007/s10973-018-7346-0.

    Article  CAS  Google Scholar 

  25. Prnova A, et al. Thermal behavior of yttrium aluminate glasses studied by DSC, high-temperature X-ray diffraction, SEM and SEM-EDS. J Therm Anal Calorim. 2017;128(3):1407–15. https://doi.org/10.1007/s10973-016-6078-2.

    Article  CAS  Google Scholar 

  26. Hou JG, Kumar RV, Qu YF, Krsmanovic D. Crystallization kinetics and densification of YAG nanoparticles from various chelating agents. Mater Res Bull. 2009;44:1786–91. https://doi.org/10.1016/j.materresbull.2009.03.001.

    Article  CAS  Google Scholar 

  27. Zhang W, He F, Xie J, Liu X, Fang D, Yang H, Luo Z. Crystallization mechanism and properties of glass ceramics from modified molten blast furnace slag. J Non-Cryst Solids. 2018;502:164–71. https://doi.org/10.1016/j.jnoncrysol.2018.08.024.

    Article  CAS  Google Scholar 

  28. Reddy AA, et al. Study of melilite based glasses and glass-ceramics nucleated by Bi2O3 for functional applications. RSC Adv. 2012;2(29):10955–67. https://doi.org/10.1039/C2RA22001F.

    Article  CAS  Google Scholar 

  29. Malecki A, Gajerski R, Labus S, Prochovska-Klisch B, Oblakowski J. Kinetics and mechanism of crystallization of gehlenite glass pure and doped with Co2+, Eu3+, Cr3+ and Th4+. J Non-Cryst Solids. 1997;212:55–8. https://doi.org/10.1016/S0022-3093(96)00537-6.

    Article  CAS  Google Scholar 

  30. Prnova A, Plsko A, Valuchova J, Svancarek P, Klement R, Michalkova M, Galusek D. Crystallization kinetics of yttrium aluminate glasses. J Therm Anal Calorim. 2018;133(1):227–36. https://doi.org/10.1007/s10973-017-6948-2.

    Article  CAS  Google Scholar 

  31. Prnova A, et al. Crystallization kinetics of binary La2O3–Al2O3 glass. J Non-Cryst Solids. 2018;501:55–61. https://doi.org/10.1016/j.jnoncrysol.2018.03.001.

    Article  CAS  Google Scholar 

  32. Vyazovkin S, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19. https://doi.org/10.1016/j.tca.2011.03.034.

    Article  CAS  Google Scholar 

  33. Johnson WA, Mehl RF, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall Pet Eng. 1939;135:416–42.

    Google Scholar 

  34. Šesták J, Šimon P. Thermal analysis of micro, nano- and noncrystalline materials: transformation, crystallization, kinetics and thermodynamics. Netherlands: Springer; 2013.

    Google Scholar 

  35. Tanaka H. Thermal analysis and kinetics of solid state reaction. Thermochim Acta. 1995;267:29–44. https://doi.org/10.1016/0040-6031(95)02464-6.

    Article  CAS  Google Scholar 

  36. Johnson JB, Omland KS. Model selection in ecology and evolution. Trends Ecol Evol. 2004;19:101–8. https://doi.org/10.1016/j.tree.2003.10.013.

    Article  PubMed  Google Scholar 

  37. Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19:716–23. https://doi.org/10.1109/TAC.1974.1100705.

    Article  Google Scholar 

  38. Málek J. The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim Acta. 1995;267:61–73. https://doi.org/10.1016/0040-6031(95)02466-2.

    Article  Google Scholar 

  39. Cavanaugh JE. Criteria for linear model selection based on Kullback‘s symmetric divergence. Aust N Y Stat. 2004;46:257–74. https://doi.org/10.1111/j.1467-842X.2004.00328.x.

    Article  Google Scholar 

  40. Kim HJ, Cavanaugh JE. Model selection criteria based on Kullback information measures for nonlinear regression. J Stat Plan Inference. 2005;134:332–49. https://doi.org/10.1016/j.jspi.2004.05.002.

    Article  Google Scholar 

  41. Haladejova K, Prnova A, Klement R, Tuanb WH, Shihc SJ, Galusek D. Aluminate glass based phosphors for LED applications. J Eur Ceram Soc. 2016;36:2969–73. https://doi.org/10.1016/j.jeurceramsoc.2015.11.027.

    Article  CAS  Google Scholar 

  42. Klement R, Hruska B, Hronsky V, Olcak D. Preparation and characterization of basic and Er3+ doped glasses in the system Y2O3–Al2O3–ZrO2. Acta Phys Pol A. 2014;126:302–3. https://doi.org/10.12693/APhysPolA.126.302.

    Article  CAS  Google Scholar 

  43. Marotta A, Buri A, Valenti GL. Crystallization kinetics of gehlenite glasses. J Mat Sci. 1978;13:2483–6.

    CAS  Google Scholar 

  44. Malecki A, Lejus AM, Viana B, Vivien D, Collongues R. Spectroscopic studies of the kinetics of devitrification of Nd3+-doped glasses in the akermanite-gehlenite system. J Non-Cryst Solids. 1994;170:161–6. https://doi.org/10.1016/0022-3093(94)90042-6.

    Article  CAS  Google Scholar 

  45. Šesták J, Šatava V, Wendlandt WW. The study of heterogeneous processes by thermal analysis. Thermochim Acta. 1973;7:333–556. https://doi.org/10.1016/0040-6031(73)87019-4.

    Article  Google Scholar 

Download references

Acknowledgements

This paper is a part of dissemination activities of project FunGlass. This project has received funding from the European Union´s Horizon 2020, research and innovation programme under Grant Agreement No 739566. The financial support of this work by the projects VEGA 1/0527/18, APVV-17-0049, VEGA 2/0026/17, VEGA 2/0164/17 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melinda Majerová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majerová, M., Prnová, A., Plško, A. et al. Crystallization kinetics of gehlenite glass microspheres. J Therm Anal Calorim 142, 1003–1010 (2020). https://doi.org/10.1007/s10973-020-09305-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09305-7

Keywords

Navigation