Skip to main content
Log in

Magnetic and Structural Properties of Novel-Coated Ni0.5Co0.5Fe1.6Gd0.2Mo0.1Sm0.1O4 Spinel Ferrite Nanomaterial: Experimental and Theoretical Investigations

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The fabrication of magnetic coated nanoparticles in a single step is a challenge for nanotechnology applications. In this paper, Ni0.5Co0.5Fe1.6Gd0.2Mo0.1Sm0.1O4 nanoparticles coated with oleic acid were prepared by the one-step co-precipitation method for the first time. The thermal behavior of the obtained precipitate (uncalcined powder) was studied by TGA and DSC analysis. X-ray diffraction (XRD) shows the formation of a pure phase of oleic acid–coated spinel structure nanoparticles with a crystallite size of 23 nm. Rietveld refinement analysis shows a group space of Fd-3 m. The cation distribution analysis shows the formation of a mixed structure. Infrared spectroscopy analysis (FTIR) shows the formation of crystallographic sites of the spinel structure and that the nanoparticles are coated with a single layer of oleic acid. The morphology analysis indicates the formation of spherical nanoparticles with different sizes. Magnetic measurements were performed at three different temperatures 5, 80, and 300 K and show promising magnetic properties in terms of magnetization and coercivity. Density functional theory (DFT) calculations were also performed in this work on undoped and Mo-, Sm-, and Gd-doped Ni-Co ferrite systems to get an insight into the electronic structure of these systems. These results demonstrate that these nanoparticles can be used in several nanotechnological applications, including wireless communication technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mahatme, U.B.: Basics of nanoscience, nanomaterials and nanotechnology. Basics Nanosci. Nanomater. Nanotechnol. 1–74 (2021). https://doi.org/10.9734/bpi/mono/978-93-91473-03-7

  2. Peddis, D., Yaacoub, N., Ferretti, M., Martinelli, A., Piccaluga, G., Musinu, A., Cannas, C., Navarra, G., Greneche, J.M., Fiorani, D.: Cationic distribution and spin canting in CoFe2O4nanoparticles. J. Phys.: Condens. Matter. 23, 426004 (2011). https://doi.org/10.1088/0953-8984/23/42/426004

  3. Sharifianjazi, F., Moradi, M., Parvin, N., Nemati, A., Jafari Rad, A., Sheysi, N., Abouchenari, A., Mohammadi, A., Karbasi, S., Ahmadi, Z., Esmaeilkhanian, A., Irani, M., Pakseresht, A., Sahmani, S., Shahedi Asl, M.: Magnetic CoFe2O4 nanoparticles doped with metal ions: a review. Ceram. Int. 46, 18391–18412 (2020). https://doi.org/10.1016/j.ceramint.2020.04.202

    Article  Google Scholar 

  4. Narang, S.B., Pubby, K.: Nickel spinel ferrites: a review. J. Magn. Magn. Mater. 519, 167163 (2021). https://doi.org/10.1016/j.jmmm.2020.167163

    Article  Google Scholar 

  5. Cruz-Franco, B., Gaudisson, T., Ammar, S., Bolarín-Miró, A.M., de Jesús, F.S., Mazaleyrat, F., Nowak, S., Vázquez-Victorio, G., Ortega-Zempoalteca, R., Valenzuela, R.: Magnetic properties of nanostructured spinel ferrites. IEEE Trans. Magn. 50, 1–6 (2014). https://doi.org/10.1109/TMAG.2013.2283875

    Article  Google Scholar 

  6. Dalal, J., Malik, S., Dahiya, S., Punia, R., Singh, K., Maan, A.S., Dhawan, S.K., Ohlan, A.: One pot synthesis and electromagnetic interference shielding behavior of reduced graphene oxide nanocomposites decorated with Ni0.5Co0.5Fe2O4 nanoparticles. J. Alloys Compd. 887, 161472 (2021). https://doi.org/10.1016/j.jallcom.2021.161472

  7. Mandal, A., Ghosal, A., Majumdar, A., Ghosh, A., Das, A., Das, S.K.: Analysis of feeding techniques of rectangular microstrip antenna. In: 2012 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2012). pp. 26–31. IEEE, Hong Kong, China (2012)

  8. Phadatare, M.R., Khot, V.M., Salunkhe, A.B., Thorat, N.D., Pawar, S.H.: Studies on polyethylene glycol coating on NiFe2O4 nanoparticles for biomedical applications. J. Magn. Magn. Mater. 324, 770–772 (2012). https://doi.org/10.1016/j.jmmm.2011.09.020

    Article  ADS  Google Scholar 

  9. lei, Y., Yao, Z., Lin, H., Zhou, J., Haidry, A.A., liu, P.: The effect of polymerization temperature and reaction time on microwave absorption properties of Co-doped ZnNi ferrite/polyaniline composites. RSC Adv. 8, 29344–29355 (2018). https://doi.org/10.1039/C8RA05500A

  10. Khan, K.: Microwave absorption properties of radar absorbing nanosized cobalt ferrites for high frequency applications. J. Supercond. Nov. Magn. 27, 453–461 (2014). https://doi.org/10.1007/s10948-013-2283-4

    Article  Google Scholar 

  11. Gibin, S.R., Sivagurunathan, P.: Synthesis and characterization of nickel cobalt ferrite (Ni1−xCoxFe2O4) nano particles by co-precipitation method with citrate as chelating agent. J. Mater. Sci. Mater. Electron. 28, 1985–1996 (2017). https://doi.org/10.1007/s10854-016-5755-z

    Article  Google Scholar 

  12. Aghrich, K., Abdellaoui, M., Mamouni, N., Bellaouchou, A., Fekhaoui, M., Hlil, E.K., Mounkachi, O.: Experimental and first-principles study of the origin of the magnetic properties of CoFe2O4 spinel ferrite. Appl. Phys. A. 126, 940 (2020). https://doi.org/10.1007/s00339-020-04114-z

    Article  ADS  Google Scholar 

  13. Vestal, C.R., Zhang, Z.J.: Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles. J. Am. Chem. Soc. 125, 9828–9833 (2003). https://doi.org/10.1021/ja035474n

    Article  Google Scholar 

  14. Mirzaee, SH., Farjami Shayesteh, S., Mahdavifar, S.: Anisotropy investigation of cobalt ferrite nanoparticles embedded in polyvinyl alcohol matrix: a Monte Carlo study. Polymer. 55, 3713–3719 (2014). https://doi.org/10.1016/j.polymer.2014.06.039

  15. Pérez, N., Bartolomé, F., García, L.M., Bartolomé, J., Morales, M.P., Serna, C.J., Labarta, A., Batlle, X.: Nanostructural origin of the spin and orbital contribution to the magnetic moment in Fe3−xO4 magnetite nanoparticles. Appl. Phys. Lett. 94, 093108 (2009). https://doi.org/10.1063/1.3095484

    Article  ADS  Google Scholar 

  16. Aslibeiki, B., Kameli, P., Ehsani, M.H., Salamati, H., Muscas, G., Agostinelli, E., Foglietti, V., Casciardi, S., Peddis, D.: Solvothermal synthesis of MnFe2O4 nanoparticles: the role of polymer coating on morphology and magnetic properties. J. Magn. Magn. Mater. 399, 236–244 (2016). https://doi.org/10.1016/j.jmmm.2015.09.081

    Article  ADS  Google Scholar 

  17. Nagesha, D.K., Plouffe, B.D., Phan, M., Lewis, L.H., Sridhar, S., Murthy, S.K.: Functionalization-induced improvement in magnetic properties of Fe3O4 nanoparticles for biomedical applications. J. Appl. Phys. 105, 07B317 (2009). https://doi.org/10.1063/1.3073654

    Article  Google Scholar 

  18. Salafranca, J., Gazquez, J., Pérez, N., Labarta, A., Pantelides, S.T., Pennycook, S.J., Batlle, X., Varela, M.: Surfactant organic molecules restore magnetism in metal-oxide nanoparticle surfaces. Nano Lett. 12, 2499–2503 (2012). https://doi.org/10.1021/nl300665z

    Article  ADS  Google Scholar 

  19. Yuan, Y., Rende, D., Altan, C.L., Bucak, S., Ozisik, R., Borca-Tasciuc, D.-A.: Effect of surface modification on magnetization of iron oxide nanoparticle colloids. Langmuir 28, 13051–13059 (2012). https://doi.org/10.1021/la3022479

    Article  Google Scholar 

  20. Peddis, D., Orrù, F., Ardu, A., Cannas, C., Musinu, A., Piccaluga, G.: Interparticle interactions and magnetic anisotropy in cobalt ferrite nanoparticles: influence of molecular coating. Chem. Mater. 24, 1062–1071 (2012). https://doi.org/10.1021/cm203280y

    Article  Google Scholar 

  21. Blanco-Andujar, C., Ortega, D., Southern, P., A. Pankhurst, Q., K. Thanh, N.T.: High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions. Nanoscale. 7, 1768–1775 (2015). https://doi.org/10.1039/C4NR06239F

  22. Vasilakaki, M., Ntallis, N., Bellusci, M., Varsano, F., Mathieu, R., Fiorani, D., Peddis, D., Trohidou, K.N.: Effect of albumin mediated clustering on the magnetic behavior of MnFe2O4 nanoparticles: experimental and theoretical modeling study. Nanotechnology. 31, 025707 (2019). https://doi.org/10.1088/1361-6528/ab4764

    Article  ADS  Google Scholar 

  23. Herojit singh, L., Govindaraj, R., Amarendra, G., Sundar, C.S.: Atomic scale study on the thermal evolution of local structure and magnetic properties in oleic acid coated iron oxide nanoparticles. J. Phys. Chem. C. 117, 25042–25051 (2013). https://doi.org/10.1021/jp406183s

  24. Zhang, D.E., Zhang, X.J., Ni, X.M., Zheng, H.G., Yang, D.D.: Synthesis and characterization of NiFe2O4 magnetic nanorods via a PEG-assisted route. J. Magn. Magn. Mater. 292, 79–82 (2005). https://doi.org/10.1016/j.jmmm.2004.10.097

    Article  ADS  Google Scholar 

  25. Vasilakaki, M., Ntallis, N., Yaacoub, N., Muscas, G., Peddis, D., Trohidou, K.N.: Optimising the magnetic performance of Co ferrite nanoparticles via organic ligand capping. Nanoscale 10, 21244–21253 (2018). https://doi.org/10.1039/C8NR04566F

    Article  Google Scholar 

  26. Ngo, A.T., Bonville, P., Pileni, M.P.: Nanoparticles of: synthesis and superparamagnetic properties. Eur. Phys. J. B - Condens. Matter. Complex. Syst. 9, 583–592 (1999). https://doi.org/10.1007/s100510050801

  27. Hssaini, A., Belaiche, M., Elansary, M.: One-step synthesis of coated (Gd3+, Er3+) co-doped Co–Ni ferrite nanoparticles; structural and magnetic properties. J. Mater. Sci. Mater. Electron. 32, (2021). https://doi.org/10.1007/s10854-021-05823-8

  28. Ghone, D.M., Mathe, V.L., Patankar, K.K., Kaushik, S.D.: Microstructure, lattice strain, magnetic and magnetostriction properties of holmium substituted cobalt ferrites obtained by co-precipitation method. J. Alloys Compd. 739, 52–61 (2018). https://doi.org/10.1016/j.jallcom.2017.12.219

    Article  Google Scholar 

  29. Kadam, A.B., Mande, V.K., Kadam, S.B., Kadam, R.H., Shirsath, S.E., Borade, R.B.: Influence of gadolinium (Gd3+) ion substitution on structural, magnetic and electrical properties of cobalt ferrites. J. Alloys Compd. 840, 155669 (2020). https://doi.org/10.1016/j.jallcom.2020.155669

    Article  Google Scholar 

  30. Tanbir, K., Ghosh, M.P., Singh, R.K., Kar, M., Mukherjee, S.: Effect of doping different rare earth ions on microstructural, optical, and magnetic properties of nickel–cobalt ferrite nanoparticles. J. Mater. Sci. Mater. Electron. 31, 435–443 (2020). https://doi.org/10.1007/s10854-019-02546-9

    Article  Google Scholar 

  31. Ditta, A., Khan, M.A., Junaid, M., Khalil, R.M.A., Warsi, M.F.: Structural, magnetic and spectral properties of Gd and Dy co-doped dielectrically modified Co-Ni (Ni0.4Co0.6Fe2O4) ferrites. Phys. B Condens. Matter. 507, 27–34 (2017). https://doi.org/10.1016/j.physb.2016.11.030

  32. Arun Kumar, Ch., Ganapathi Rao, G., Samatha, K., Bharadwaj, S., Dasari, M.P.: Observation on magnetic variation for low concentration of bismuth and samarium doped Ni–Co ferrites. Karbala Int. J. Mod. Sci. 4, 143–150 (2018). https://doi.org/10.1016/j.kijoms.2018.01.001

  33. Kadam, A.A., Shinde, S.S., Yadav, S.P., Patil, P.S., Rajpure, K.Y.: Structural, morphological, electrical and magnetic properties of Dy doped Ni–Co substitutional spinel ferrite. J. Magn. Magn. Mater. 329, 59–64 (2013). https://doi.org/10.1016/j.jmmm.2012.10.008

    Article  ADS  Google Scholar 

  34. Nikzad, A., Parvizi, R., Rezaei, G., Vaseghi, B., Khordad, R.: Structural, magnetic and microwave properties of nanocrystalline Ni-Co-Gd ferrites. J. Electron. Mater. 47, 1302–1310 (2018). https://doi.org/10.1007/s11664-017-5921-y

    Article  ADS  Google Scholar 

  35. Almessiere, M.A., Unal, B., Slimani, Y., Gungunes, H., Toprak, M.S., Tashkandi, N., Baykal, A., Sertkol, M., Trukhanov, A.V., Yıldız, A., Manikandan, A.: Effects of Ce–Dy rare earths co-doping on various features of Ni–Co spinel ferrite microspheres prepared via hydrothermal approach. J. Mater. Res. Technol. 14, 2534–2553 (2021). https://doi.org/10.1016/j.jmrt.2021.07.142

    Article  Google Scholar 

  36. Peymani-Motlagh, S.M., Sobhani-Nasab, A., Rostami, M., Sobati, H., Eghbali-Arani, M., Fasihi-Ramandi, M., Ganjali, M.R., Rahimi-Nasrabadi, M.: Assessing the magnetic, cytotoxic and photocatalytic influence of incorporating Yb3+ or Pr3+ ions in cobalt–nickel ferrite. J. Mater. Sci. Mater. Electron. 30, 6902–6909 (2019). https://doi.org/10.1007/s10854-019-01005-9

    Article  Google Scholar 

  37. Srinivasamurthy, K.M., Angadi, V.J., Kubrin, S.P., Matteppanavar, S., Sarychev, D.A., Rudraswamy, B.: Effect of Ce3+ ion on structural and hyperfine interaction studies of Co0.5Ni0.5Fe2−xCexO4 ferrites: useful for permanent magnet applications. J. Supercond. Nov. Magn. 32, 693–704 (2019). https://doi.org/10.1007/s10948-018-4752-2

  38. Kokare, M.K., Jadhav, N.A., Kumar, Y., Jadhav, K.M., Rathod, S.M.: Effect of Nd3+ doping on structural and magnetic properties of Ni0.5Co0.5Fe2O4 nanocrystalline ferrites synthesized by sol-gel auto combustion method. J. Alloys Compd. 748, 1053–1061 (2018). https://doi.org/10.1016/j.jallcom.2018.03.168

  39. Sharma, S., Verma, M.K., Sharma, N.D., Choudhary, N., Singh, S., Singh, D.: Rare-earth doped Ni–Co ferrites synthesized by Pechini method: cation distribution and high temperature magnetic studies. Ceram. Int. 47, 17510–17519 (2021). https://doi.org/10.1016/j.ceramint.2021.03.069

    Article  Google Scholar 

  40. Qamar, S., Akhtar, M.N., Aleem, W., Rehman, Z. ur, Khan, A.H., Ahmad, A., Batoo, K.M., Aamir, M.: Graphene anchored Ce doped spinel ferrites for practical and technological applications. Ceram. Int. 46, 7081–7088 (2020). https://doi.org/10.1016/j.ceramint.2019.11.200

  41. Andreou, E., Zervos, T., Alexandridis, A.A., Fikioris, G.: Magnetodielectric materials in antenna design: exploring the potentials for reconfigurability. IEEE Antennas Propag. Mag. 61, 29–40 (2019). https://doi.org/10.1109/MAP.2018.2883029

    Article  ADS  Google Scholar 

  42. Saxena, N.K., Singh, B., Kumar, N., Pourush, P.K.S.: Microstrip triangular patch antenna fabricated on LiTiZn ferrite substrate and tested in the X band range. AEU - Int. J. Electron. Commun. 66, 140–142 (2012). https://doi.org/10.1016/j.aeue.2011.06.002

    Article  Google Scholar 

  43. Saxena, N.K., Kumar, N., Pourush, P.K.S.: Radiation characteristics of microstrip rectangular patch antenna fabricated on LiTiMg ferrite substrate. AEU - Int. J. Electron. Commun. 69, 1741–1744 (2015). https://doi.org/10.1016/j.aeue.2015.08.005

    Article  Google Scholar 

  44. Bhongale, S.R., Ingavale, H.R., Shinde, T.J., Vasambekar, P.N.: Microwave sintered Mg-Cd ferrite substrates for microstrip patch antennas in X-band. AEU - Int. J. Electron. Commun. 96, 246–251 (2018). https://doi.org/10.1016/j.aeue.2018.09.040

    Article  Google Scholar 

  45. Yang, G.M., Xing, X., Daigle, A., Liu, M., Obi, O., Stoute, S., Naishadham, K., Sun, N.X.: Circular polarization antennas with high permittivity substrates and self- biased NiCo-ferrite films loading

  46. Yang, G.-M., Obi, O., Sun, N.X.: Small global positioning system patch antennas with self-biased NiCo-ferrite films. Microw. Opt. Technol. Lett. 53, 1162–1165 (2011). https://doi.org/10.1002/mop.25909

    Article  Google Scholar 

  47. Guo-Min Yang, Shrabstein, A., Xing, X., Obi, O., Stoute, S., Liu, M., Lou, J., Sun, N.X.: Miniaturized antennas and planar bandpass filters with self-biased NiCo-ferrite films. IEEE Trans. Magn. 45, 4191–4194 (2009). https://doi.org/10.1109/TMAG.2009.2023996

  48. Roy, J.S., Vaudon, P., Reineix, A., Jecko, F., Jecko, B.: Circularly polarized far fields of an axially magnetized circular ferrite microstrip antenna. Microw. Opt. Technol. Lett. 5, 228–230 (1992). https://doi.org/10.1002/mop.4650050508

    Article  ADS  Google Scholar 

  49. Fukusako, T., Imahase, A., Mita, N.: Polarization characteristics of patch antenna using in-plane and weakly biased ferrite substrate. IEEE Trans. Antennas Propag. 52, 325–327 (2004). https://doi.org/10.1109/TAP.2003.820972

    Article  ADS  Google Scholar 

  50. Mavridis, A.A., Kyriacou, G.A., Sahalos, J.N.: On the design of patch antennas tuned by transversely magnetized lossy ferrite including a novel resonating mode. Prog. Electromagn. Res. 62, 165–192 (2006). https://doi.org/10.2528/PIER06041301

    Article  Google Scholar 

  51. Guo-Min Yang, Xing, X., Daigle, A., Liu, M., Obi, O., Stoute, S., Naishadham, K., Sun, N.X.: Tunable miniaturized patch antennas with self-biased multilayer magnetic films. IEEE Trans. Antennas Propag. 57, 2190–2193 (2009). https://doi.org/10.1109/TAP.2009.2021972

  52. Andreou, E., Zervos, T., Varouti, E., Alexandridis, A.A., Lazarakis, F., Fikioris, G.: A reconfigurable patch antenna printed on YIG-epoxy composite substrate. In: 2016 10th European Conference on Antennas and Propagation (EuCAP). pp. 1–5. IEEE, Davos, Switzerland (2016)

  53. Ghaffar, F.A., Vaseem, M., Roy, L., Shamim, A.: Design and fabrication of a frequency and polarization reconfigurable microwave antenna on a printed partially magnetized ferrite substrate. IEEE Trans. Antennas Propag. 66, 4866–4871 (2018). https://doi.org/10.1109/TAP.2018.2846796

    Article  ADS  Google Scholar 

  54. Zheng, Z., Zhang, H., Xiao, J.Q., Bai, F.: Low loss ${\rm NiZn/Co}_{2}{\rm Z}$ composite ferrite with almost equal values of permeability and permittivity for antenna applications. IEEE Trans. Magn. 49, 4214–4217 (2013). https://doi.org/10.1109/TMAG.2013.2243829

    Article  ADS  Google Scholar 

  55. Borah, K., Bhattacharyya, N.: Magnetodielectric composite with NiFe 2 O 4 inclusions as substrates for microstrip antennas. IEEE Trans. Dielectr. Electr. Insul. 19, 1825–1832 (2012). https://doi.org/10.1109/TDEI.2012.6311533

    Article  Google Scholar 

  56. Li, Q., Chen, Y., Yu, C., Young, L., Spector, J., Harris, V.G.: Emerging magnetodielectric materials for 5G communications: 18H hexaferrites. Acta Mater. 231, 117854 (2022). https://doi.org/10.1016/j.actamat.2022.117854

    Article  Google Scholar 

  57. Naveed-Ul-Haq, M., Hussain, S., Webers, S., Salamon, S., Ahmad, I., Bibi, T., Hameed, A., Wende, H.: On the structure–property relationships of (Al, Ga, In)-doped spinel cobalt ferrite compounds: a combined experimental and DFT study. Phys. Chem. Chem. Phys. 23, 18112–18124 (2021). https://doi.org/10.1039/D1CP02625A

    Article  Google Scholar 

  58. Rafiq, M.A., Javed, A., Rasul, M.N., Khan, M.A., Hussain, A.: Understanding the structural, electronic, magnetic and optical properties of spinel MFe2O4 (M = Mn Co, Ni) ferrites. Ceram. Int. 46, 4976–4983 (2020). https://doi.org/10.1016/j.ceramint.2019.10.237

    Article  Google Scholar 

  59. Fritsch, D., Ederer, C.: First-principles calculation of magnetoelastic coefficients and magnetostriction in the spinel ferrites CoFe${}_{2}$O${}_{4}$ and NiFe${}_{2}$O${}_{4}$. Phys. Rev. B. 86, 014406 (2012). https://doi.org/10.1103/PhysRevB.86.014406

    Article  ADS  Google Scholar 

  60. Fritsch, D., Ederer, C.: Epitaxial strain effects in the spinel ferrites CoFe2O4 and NiFe2O4 from first principles calculations. Phys. Rev. B. 82, 104117 (2010). https://doi.org/10.1103/PhysRevB.82.104117

    Article  ADS  Google Scholar 

  61. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Corso, A.D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 21, 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  62. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  63. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B. 13, 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  ADS  MathSciNet  Google Scholar 

  64. Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J., Laskowski, R., Tran, F., Marks, L.D.: WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties (Karlheinz Schwarz Techn. Universität Wien Austria) 3-9501031-1-2, (2018)

  65. Anisimov, V.I., Zaanen, J., Andersen, O.K.: Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B. 44, 943 (1991). https://doi.org/10.1103/PhysRevB.44.943

    Article  ADS  Google Scholar 

  66. Ahmani Ferdi, C., Belaiche, M., Iffer, E.: Structural, electrochemical, electronic, and magnetic properties of monoclinic LixV2(PO4)3 for x = 3, 2, 1 using first-principles calculations. J. Solid State Electrochem. (2020). https://doi.org/10.1007/s10008-020-04808-7

    Article  Google Scholar 

  67. Zhou, F., Cococcioni, M., Marianetti, C.A., Morgan, D., Ceder, G.: First-principles prediction of redox potentials in transition-metal compounds with LDA+ U. Phys. Rev. B. 70, 235121 (2004). https://doi.org/10.1103/PhysRevB.70.235121

    Article  ADS  Google Scholar 

  68. Park, S.-G., Magyari-Köpe, B., Nishi, Y.: Electronic correlation effects in reduced rutile TiO2 within the LDA+U method. Phys. Rev. B. 82, 115109 (2010). https://doi.org/10.1103/PhysRevB.82.115109

    Article  ADS  Google Scholar 

  69. Madsen, G.K.H., Novák, P.: Charge order in magnetite. An LDA+ U study. EPL Europhys. Lett. 69, 777 (2005). https://doi.org/10.1209/epl/i2004-10416-x

  70. Aadil, M., Zulfiqar, S., Warsi, M.F., Agboola, P.O., Shakir, I.: Free-standing urchin-like nanoarchitectures of Co3O4 for advanced energy storage applications. J. Mater. Res. Technol. 9, 12697–12706 (2020). https://doi.org/10.1016/j.jmrt.2020.08.110

    Article  Google Scholar 

  71. Lin, S., Pan, X., Meng, D., Zhang, T.: Electric conversion treatment of cobalt-containing wastewater. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 83, 1973–1986 (2021). https://doi.org/10.2166/wst.2021.101

  72. Hwang, I., Jang, I., Lee, G., Tak, Y.: Binary cobalt and magnesium hydroxide catalyst for oxygen evolution reaction in alkaline water electrolysis. Int. J. Electrochem. Sci. 11, 6204–6214 (2016)

    Article  Google Scholar 

  73. Pinto, P., Lanza, G., Ardisson, J., Lago, R.: Controlled dehydration of Fe(OH)3 to Fe2O3: developing mesopores with complexing iron species for the adsorption of β-lactam antibiotics. J. Braz. Chem. Soc. 30, (2018). https://doi.org/10.21577/0103-5053.20180179

  74. Carrasco, G.F., Portillo, M.C., Santiago, A.C., Diaz, A.R., Mora-Ramirez, M.A., Moreno, O.P.: Morphological and structural analysis of the Fe(OH)3 and CuS transitions to Fe2O3 and CuO. Optik 243, 167377 (2021). https://doi.org/10.1016/j.ijleo.2021.167377

    Article  ADS  Google Scholar 

  75. Yassine, M., Belaiche, M., Briche, S.: Elaboration, characterization, and magnetic properties of Ni 0.5 Zn 0.5 Fe 2 O 4 nanoparticles of high purity using molten salts technique. Phys. Status Solidi A. 215, (2018). https://doi.org/10.1002/pssa.201800469

  76. Abbas, S.A., Jung, K.-D.: Preparation of mesoporous microspheres of NiO with high surface area and analysis on their pseudocapacitive behavior. Electrochim. Acta 193, 145–153 (2016). https://doi.org/10.1016/j.electacta.2016.02.054

    Article  Google Scholar 

  77. Muneer, I., Farrukh, M.A., Javaid, S., Shahid, M., Khaleeq-ur-Rahman, M.: Synthesis of Gd2O3/Sm2O3 nanocomposite via sonication and hydrothermal methods and its optical properties. Superlattices. Microstruct. C, 256–266 (2015). https://doi.org/10.1016/j.spmi.2014.10.006

  78. Li, G., Liang, Y., Zhang, M., Yu, D.: Size-tunable synthesis and luminescent properties of Gd(OH)3:Eu3+ and Gd2O3:Eu3+ hexagonal nano-/microprisms. CrystEngComm 16, 6670–6679 (2014). https://doi.org/10.1039/C4CE00482E

    Article  Google Scholar 

  79. Zhang, M., He, J., Deng, M., Gong, P., Zhang, X., Fan, M., Wang, K.: Rheological behaviours of guar gum derivatives with hydrophobic unsaturated long-chains. RSC Adv. 10, 32050–32057 (2020). https://doi.org/10.1039/D0RA04322B

    Article  ADS  Google Scholar 

  80. Seyhan, M., Kucharczyk, W., Yarar, U.E., Rickard, K., Rende, D., Baysal, N., Bucak, S., Ozisik, R.: Interfacial surfactant competition and its impact on poly(ethylene oxide)/Au and poly(ethylene oxide)/Ag nanocomposite properties. Nanotechnol. Sci. Appl. 10, 69–77 (2017). https://doi.org/10.2147/NSA.S129468

    Article  Google Scholar 

  81. Li, Y.-R., Li, Q.-Y., Wang, X.-D., Yu, L.-G., Yang, J.-J.: Aquathermolysis of heavy crude oil with ferric oleate catalyst. Pet. Sci. 15, 613–624 (2018). https://doi.org/10.1007/s12182-018-0246-x

    Article  ADS  Google Scholar 

  82. Bužarovska, A., Dinescu, S., Chitoiu, L., Costache, M.: Porous poly(l-lactic acid) nanocomposite scaffolds with functionalized TiO2 nanoparticles: properties, cytocompatibility and drug release capability. J. Mater. Sci. 53, 11151–11166 (2018). https://doi.org/10.1007/s10853-018-2415-0

    Article  ADS  Google Scholar 

  83. Konyukhov, Y., Minh, N., Ryzhonkov, D.: Kinetics of reduction of α-Fe2O3 nanopowder with hydrogen under power mechanical treatment in an electromagnetic field. Inorg. Mater. Appl. Res. 10, 706–712 (2019). https://doi.org/10.1134/S2075113319030171

    Article  Google Scholar 

  84. Qin, Z., Wang, Y., Huang, X., Shen, W., Yu, J., Li, J.: A facile synthesis of three dimensional β-Ni(OH)2 composed of ultrathin nanosheets for high performance pseudocapacitor. J. Inorg. Organomet. Polym. Mater. 30, 2089–2097 (2020). https://doi.org/10.1007/s10904-019-01360-4

    Article  Google Scholar 

  85. Madern, N., Charbonnier, V., Monnier, J., Zhang, J., Paul-Boncour, V., Latroche, M.: Investigation of H sorption and corrosion properties of Sm2MnxNi7−x (0 ≤ x < 0.5) intermetallic compounds forming reversible hydrides. Energies. 13, 3470 (2020). https://doi.org/10.3390/en13133470

  86. Yousefi, T., Mostaedi, M.T., Ghasemi, M., Ghadirifar, A.: A simple way to synthesize of samarium oxide nanoparticles: characterization and effect of pH on morphology. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 46, 137–142 (2016). https://doi.org/10.1080/15533174.2014.900795

    Article  Google Scholar 

  87. Kaur, G., Sharma, P., Priya, R., Pandey, O.P.: Thermal dehydration kinetics involved during the conversion of gadolinium hydroxide to gadolinium oxide. J. Alloys Compd. 822, 153450 (2020). https://doi.org/10.1016/j.jallcom.2019.153450

    Article  Google Scholar 

  88. Yassine, M., Belaiche, M., Briche, S., Ahmani Ferdi, C., Elabadila, I.: Elaboration, characterization and first principle studies of MnCo2O4 nanomaterials prepared from non-standard raw materials. Mater. Res. Express. 6, 035508 (2019). https://doi.org/10.1088/2053-1591/aaf447

    Article  ADS  Google Scholar 

  89. Solgi, M., Cheraghali, R., Aghazadeh, M.: Self-assembled Co(OH)2/functionalized MWNTs/porous graphene ternary binder-free hybrid for supercapacitors. J. Mater. Sci. Mater. Electron. 32, 1–17 (2021). https://doi.org/10.1007/s10854-020-04733-5

    Article  Google Scholar 

  90. Joshi, S., Kamble, V.B., Kumar, M., Umarji, A.M., Srivastava, G.: Nickel substitution induced effects on gas sensing properties of cobalt ferrite nanoparticles. J. Alloys Compd. 654, 460–466 (2016). https://doi.org/10.1016/j.jallcom.2015.09.119

    Article  Google Scholar 

  91. Lassoued, A., Li, J.F.: Magnetic and photocatalytic properties of Ni–Co ferrites. Solid State Sci. 104, 106199 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106199

    Article  Google Scholar 

  92. Guetni, I., Belaiche, M., Ahmani Ferdi, C., Elansary, M., Bsoul, I.: New investigation of nanosized co-doped Gd-Sm anatase TiO2 structural, magnetic, optical, and first-principles study. Appl. Phys. A. 126, 721 (2020). https://doi.org/10.1007/s00339-020-03919-2

    Article  ADS  Google Scholar 

  93. Abouzir, E., Belaiche, M., Elansary, M., Ahmani Ferdi, C., Bsoul, I.: Novel magnetic nanomaterial Co0.7Zn0.3Fe2−xGdxO4 for nanotechnology applications: experimental and theoretical investigations. J. Mater. Sci. Mater. Electron. 1–18 (2021). https://doi.org/10.1007/s10854-021-06913-3

  94. Belaiche, Y., Minaoui, K., Ouadou, M., Elansary, M., Ahmani Ferdi, C.: New nanosized (Gd3+, Sm3+) co-doped zinc ferrite: structural, magnetic and first-principles study. Phys. B Condens. Matter. 619, 413262 (2021). https://doi.org/10.1016/j.physb.2021.413262

    Article  Google Scholar 

  95. Prabhakaran, T., Mangalaraja, R.V., Denardin, J.C., Jiménez, J.A.: The effect of calcination temperature on the structural and magnetic properties of co-precipitated CoFe 2 O 4 nanoparticles. J. Alloys Compd. 716, 171–183 (2017). https://doi.org/10.1016/j.jallcom.2017.05.048

    Article  Google Scholar 

  96. Heiba, Z.K., Mohamed, M.B., Ahmed, S.I.: Cation distribution correlated with magnetic properties of cobalt ferrite nanoparticles defective by vanadium doping. J. Magn. Magn. Mater. 441, 409–416 (2017). https://doi.org/10.1016/j.jmmm.2017.06.021

    Article  ADS  Google Scholar 

  97. Naik, M.M., Naik, H.S.B., Kottam, N., Vinuth, M., Nagaraju, G., Prabhakara, M.C.: Multifunctional properties of microwave-assisted bioengineered nickel doped cobalt ferrite nanoparticles. J. Sol-Gel Sci. Technol. 91, 578–595 (2019). https://doi.org/10.1007/s10971-019-05048-6

    Article  Google Scholar 

  98. Heiba, Z.K., Mohamed, M.B., Wahba, A.M.: Effect of Mo substitution on structural and magnetic properties of Zinc ferrite nanoparticles. J. Mol. Struct. 1108, 347–351 (2016). https://doi.org/10.1016/j.molstruc.2015.12.042

    Article  ADS  Google Scholar 

  99. Varshney, D., Verma, K., Kumar, A.: Substitutional effect on structural and magnetic properties of AxCo1−xFe2O4 (A=Zn, Mg and x=0.0, 0.5) ferrites. J. Mol. Struct. 1006, 447–452 (2011). https://doi.org/10.1016/j.molstruc.2011.09.047

  100. Chakrabarty, S., Dutta, A., Pal, M.: Effect of Mn and Ni codoping on ion dynamics of nanocrystalline cobalt ferrite: a structure property correlation study. Electrochim. Acta 184, 70–79 (2015). https://doi.org/10.1016/j.electacta.2015.10.027

    Article  Google Scholar 

  101. Joshi, S., Kumar, M., Chhoker, S., Kumar, A., Singh, M.: Effect of Gd 3+ substitution on structural, magnetic, dielectric and optical properties of nanocrystalline CoFe 2 O 4. J. Magn. Magn. Mater. 426, 252–263 (2017). https://doi.org/10.1016/j.jmmm.2016.11.090

    Article  ADS  Google Scholar 

  102. Nethala, G.P., Tadi, R., Anupama, A.V., Shinde, S.L., Veeraiah, V.: Correlation between structural, magnetic and spectroscopic properties of Mg substituted CoFe2O4. Mater. Sci.-Pol. 36, 310–319 (2018). https://doi.org/10.1515/msp-2018-0043

    Article  ADS  Google Scholar 

  103. Nakagomi, F., da Silva, S.W., Garg, V.K., Oliveira, A.C., Morais, P.C., Franco, A.: Influence of the Mg-content on the cation distribution in cubic MgxFe3−xO4 nanoparticles. J. Solid State Chem. 182, 2423–2429 (2009). https://doi.org/10.1016/j.jssc.2009.06.036

    Article  ADS  Google Scholar 

  104. Shahane, G.S., Zipare, K.V., Bandgar, S.S., Mathe, V.L.: Cation distribution and magnetic properties of Zn2+ substituted MnFe2O4 nanoparticles. J. Mater. Sci. Mater. Electron. 28, 4146–4153 (2017). https://doi.org/10.1007/s10854-016-6034-8

    Article  Google Scholar 

  105. Abouzir, El., Elansary, M., Belaiche, M., Jaziri, H.: Magnetic and structural properties of single-phase Gd 3+ -substituted Co–Mg ferrite nanoparticles. RSC Adv. 10, 11244–11256 (2020). https://doi.org/10.1039/D0RA01841D

  106. Phugate, D.V., Borade, R.B., Kadam, S.B., Dhale, L.A., Kadam, R.H., Shirsath, S.E., Kadam, A.B.: Effect of Ho3+ ion doping on thermal, structural, and morphological properties of Co–Ni ferrite synthesized by sol-gel method. J. Supercond. Nov. Magn. 33, 3545–3554 (2020). https://doi.org/10.1007/s10948-020-05616-w

    Article  Google Scholar 

  107. Hssaini, A., Belaiche, M., Elansary, M.: One-step synthesis of coated (Gd3+, Er3+) co-doped Co–Ni ferrite nanoparticles; structural and magnetic properties. J. Mater. Sci. Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-05823-8

    Article  Google Scholar 

  108. Almessiere, M.A., Slimani, Y., Auwal, İA., Shirsath, S.E., Manikandan, A., Baykal, A., Özçelik, B., Ercan, İ, Trukhanov, S.V., Vinnik, D.A., Trukhanov, A.V.: Impact of Tm3+ and Tb3+ rare earth cations substitution on the structure and magnetic parameters of Co-Ni nanospinel ferrite. Nanomaterials 10, 2384 (2020). https://doi.org/10.3390/nano10122384

    Article  Google Scholar 

  109. Nandan, B., Bhatnagar, M.C., Kashyap, S.C.: Cation distribution in nanocrystalline cobalt substituted nickel ferrites: X-ray diffraction and Raman spectroscopic investigations. J. Phys. Chem. Solids. 129, 298–306 (2019). https://doi.org/10.1016/j.jpcs.2019.01.017

    Article  ADS  Google Scholar 

  110. Torkian, S., Ghasemi, A., Shoja Razavi, R.: Cation distribution and magnetic analysis of wideband microwave absorptive Co x Ni 1–x Fe 2 O 4 ferrites. Ceram. Int. 43, 6987–6995 (2017). https://doi.org/10.1016/j.ceramint.2017.02.124

    Article  Google Scholar 

  111. Vijaya Babu, K., Satyanarayana, G., Sailaja, B., Santosh Kumar, G.V., Jalaiah, K., Ravi, M.: Structural and magnetic properties of Ni0.8M0.2Fe2O4 (M = Cu, Co) nano-crystalline ferrites. Results Phys. 9, 55–62 (2018). https://doi.org/10.1016/j.rinp.2018.01.048

  112. Nandan, B., Bhatnagar, M.C., Kashyap, S.C.: Static magnetic properties and cation distribution in partially inverse polycrystalline Ni–Co ferrites. Appl. Phys. A. 124, 756 (2018). https://doi.org/10.1007/s00339-018-2181-5

    Article  ADS  Google Scholar 

  113. Kadam, A.A., Rajpure, K.Y.: Compositional variation of structural, electrical and magnetic properties of Dy substituted Ni–Co spinel ferrite. J. Mater. Sci. Mater. Electron. 27, 10484–10496 (2016). https://doi.org/10.1007/s10854-016-5157-2

    Article  Google Scholar 

  114. Kumari, M., Bhatnagar, M.C.: Study of the effect of Pr doping on structural, morphological and magnetic properties of nickel ferrite. J. Supercond. Nov. Magn. 32, 1027–1033 (2019). https://doi.org/10.1007/s10948-018-4776-7

    Article  Google Scholar 

  115. Wu, N., Fu, L., Su, M., Aslam, M., Wong, K.C., Dravid, V.P.: Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett. 4, 383–386 (2004). https://doi.org/10.1021/nl035139x

    Article  ADS  Google Scholar 

  116. Victory, M., Pant, R.P., Phanjoubam, S.: Synthesis and characterization of oleic acid coated Fe–Mn ferrite based ferrofluid. Mater. Chem. Phys. 240, 122210 (2020). https://doi.org/10.1016/j.matchemphys.2019.122210

    Article  Google Scholar 

  117. Chandekar, K.V., Kant, K.M.: Estimation of the spin-spin relaxation time of surfactant coated CoFe2O4 nanoparticles by electron paramagnetic resonance spectroscopy. Phys. E Low-Dimens. Syst. Nanostructures. 104, 192–205 (2018). https://doi.org/10.1016/j.physe.2018.06.016

    Article  ADS  Google Scholar 

  118. Yi, X., Cui, M., Peng, Y., Xia, C., Yao, Z., Li, Q.: Influence of calcination temperature on microstructure and properties of (NiCuZn)Fe2O4 ferrite prepared via ultrasonic-assisted co-precipitation. J. Supercond. Nov. Magn. 34, 1245–1252 (2021). https://doi.org/10.1007/s10948-021-05835-9

    Article  Google Scholar 

  119. Zhang, L., He, R., Gu, H.-C.: Oleic acid coating on the monodisperse magnetite nanoparticles. Appl. Surf. Sci. 253, 2611–2617 (2006). https://doi.org/10.1016/j.apsusc.2006.05.023

    Article  ADS  Google Scholar 

  120. Yang, K., Peng, H., Wen, Y., Li, N.: Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles. Appl. Surf. Sci. 256, 3093–3097 (2010). https://doi.org/10.1016/j.apsusc.2009.11.079

    Article  ADS  Google Scholar 

  121. Marinca, T.F., Chicinaş, H.F., Neamţu, B.V., Isnard, O., Pascuta, P., Lupu, N., Stoian, G., Chicinaş, I.: Mechanosynthesis, structural, thermal and magnetic characteristics of oleic acid coated Fe3O4 nanoparticles. Mater. Chem. Phys. 171, 336–345 (2016). https://doi.org/10.1016/j.matchemphys.2016.01.025

    Article  Google Scholar 

  122. Perez De Berti, I.O., Cagnoli, M.V., Pecchi, G., Alessandrini, J.L., Stewart, S.J., Bengoa, J.F., Marchetti, S.G.: Alternative low-cost approach to the synthesis of magnetic iron oxide nanoparticles by thermal decomposition of organic precursors. Nanotechnology. 24, 175601 (2013). https://doi.org/10.1088/0957-4484/24/17/175601

  123. Limaye, M.V., Singh, S.B., Date, S.K., Kothari, D., Reddy, V.R., Gupta, A., Sathe, V., Choudhary, R.J., Kulkarni, S.K.: High coercivity of oleic acid capped CoFe 2 O 4 nanoparticles at room temperature. J. Phys. Chem. B. 113, 9070–9076 (2009). https://doi.org/10.1021/jp810975v

    Article  Google Scholar 

  124. Kumar, T.V.V., Prabhakar, S., Raju, G.B.: Adsorption of oleic acid at sillimanite/water interface. J. Colloid Interface Sci. 247, 275–281 (2002). https://doi.org/10.1006/jcis.2001.8131

    Article  ADS  Google Scholar 

  125. Nalle, F.C., Wahid, R., Wulandari, I.O., Sabarudin, A.: Synthesis and characterization of magnetic fe3o4 nanoparticles using oleic acid as stabilizing agent. Rasayan J. Chem. 12, 14–21 (2019). https://doi.org/10.31788/RJC.2019.1214082

  126. Olmo, M.V., Delgado-Cabello, A., Andrada-Chacón, A., Sánchez-Benítez, J., Urones-Garrote, E., Blanco-Gutiérrez, V., Torralvo, M.J., Sáez-Puche, R.: Effect of composition and coating on the interparticle interactions and magnetic hardness of MFe2O4 (M = Fe Co, Zn) nanoparticles. Phys. Chem. Chem. Phys. 19, 8363–8372 (2017). https://doi.org/10.1039/C6CP08743D

    Article  Google Scholar 

  127. Moacă, E.-A., Farcaş, C., Coricovac, D., Avram, S., Mihali, C.-V., Drâghici, G.-A., Loghin, F., Păcurariu, C., Dehelean, C.: Oleic acid double coated Fe 3 O 4 nanoparticles as anti-melanoma compounds with a complex mechanism of activity— in vitro and in ovo assessment. J. Biomed. Nanotechnol. 15, 893–909 (2019). https://doi.org/10.1166/jbn.2019.2726

    Article  Google Scholar 

  128. Monalisa, Sharma, S., Satyapal, H.K., Singh, R.K.: Correlation between lattice strain and magnetic properties enhancement of nanocrystalline cobalt ferrite with controlled annealing. J. Mater. Sci. Mater. Electron. 32, 23843–23853 (2021). https://doi.org/10.1007/s10854-021-06795-5

  129. Somvanshi, S.B., Patade, S.R., Andhare, D.D., Jadhav, S.A., Khedkar, M.V., Kharat, P.B., Khirade, P.P., Jadhav, K.M.: Hyperthermic evaluation of oleic acid coated nano-spinel magnesium ferrite: enhancement via hydrophobic-to-hydrophilic surface transformation. J. Alloys Compd. 835, 155422 (2020). https://doi.org/10.1016/j.jallcom.2020.155422

    Article  Google Scholar 

  130. Virumbrales-del Olmo, M., Delgado-Cabello, A., Andrada-Chacón, A., Sánchez-Benítez, J., Urones-Garrote, E., Blanco-Gutiérrez, V., Torralvo, M.J., Sáez-Puche, R.: Effect of composition and coating on the interparticle interactions and magnetic hardness of MFe 2 O 4 (M = Fe Co, Zn) nanoparticles. Phys. Chem. Chem. Phys. 19, 8363–8372 (2017). https://doi.org/10.1039/C6CP08743D

    Article  Google Scholar 

  131. Bakr, A.-S.A., Moustafa, Y.M., Motawea, E.A., Yehia, M.M., Khalil, M.M.H.: Removal of ferrous ions from their aqueous solutions onto NiFe2O4–alginate composite beads. J. Environ. Chem. Eng. 3, 1486–1496 (2015). https://doi.org/10.1016/j.jece.2015.05.020

    Article  Google Scholar 

  132. Bayat, M., Javanbakht, V., Esmaili, J.: Synthesis of zeolite/nickel ferrite/sodium alginate bionanocomposite via a co-precipitation technique for efficient removal of water-soluble methylene blue dye. Int. J. Biol. Macromol. 116, 607–619 (2018). https://doi.org/10.1016/j.ijbiomac.2018.05.012

    Article  Google Scholar 

  133. Javadian, H., Ruiz, M., Saleh, T.A., Sastre, A.M.: Ca-alginate/carboxymethyl chitosan/Ni0.2Zn0.2Fe2.6O4 magnetic bionanocomposite: synthesis, characterization and application for single adsorption of Nd+3, Tb+3, and Dy+3 rare earth elements from aqueous media. J. Mol. Liq. 306, 112760 (2020). https://doi.org/10.1016/j.molliq.2020.112760

  134. Amiri, M., Salavati-Niasari, M., Pardakhty, A., Ahmadi, M., Akbari, A.: Caffeine: a novel green precursor for synthesis of magnetic CoFe2O4 nanoparticles and pH-sensitive magnetic alginate beads for drug delivery. Mater. Sci. Eng. C. 76, 1085–1093 (2017). https://doi.org/10.1016/j.msec.2017.03.208

    Article  Google Scholar 

  135. Zheng, X.-M., Dou, J.-F., Xia, M., Ding, A.-Z.: Ammonium-pillared montmorillonite-CoFe 2 O 4 composite caged in calcium alginate beads for the removal of Cs + from wastewater. Carbohydr. Polym. 167, 306–316 (2017). https://doi.org/10.1016/j.carbpol.2017.03.059

    Article  Google Scholar 

  136. Jayalakshmi, R., Jeyanthi, J.: Simultaneous removal of binary dye from textile effluent using cobalt ferrite-alginate nanocomposite: performance and mechanism. Microchem. J. 145, 791–800 (2019). https://doi.org/10.1016/j.microc.2018.11.047

  137. Kumar, A., Yadav, N., Rana, D.S., Kumar, P., Arora, M., Pant, R.P.: Structural and magnetic studies of the nickel doped CoFe2O4 ferrite nanoparticles synthesized by the chemical co-precipitation method. J. Magn. Magn. Mater. 394, 379–384 (2015). https://doi.org/10.1016/j.jmmm.2015.06.087

    Article  ADS  Google Scholar 

  138. Ati, A.A., Othaman, Z., Samavati, A.: Influence of cobalt on structural and magnetic properties of nickel ferrite nanoparticles. J. Mol. Struct. 1052, 177–182 (2013). https://doi.org/10.1016/j.molstruc.2013.08.040

    Article  ADS  Google Scholar 

  139. Hakami, T.M., Davarpanah, A.M., Rahdar, A., Barrett, S.D.: Structural and magnetic study and cytotoxicity evaluation of tetra-metallic nanoparticles of Co 0.5 Ni 0.5 Cr x Fe 2-x O 4 prepared by co-precipitation. J. Mol. Struct. 1165, 344–348 (2018). https://doi.org/10.1016/j.molstruc.2018.04.016

  140. Mesbahinia, A., Almasi-Kashi, M., Ghasemi, A., Ramezani, A.: First order reversal curve analysis of cobalt-nickel ferrite. J. Magn. Magn. Mater. 473, 161–168 (2019). https://doi.org/10.1016/j.jmmm.2018.10.057

    Article  ADS  Google Scholar 

  141. Ma, J., Chen, B., Yan, L., Sun, M.: Morphologies and magnetism of A B1-Fe2O4 self-assembled nanospheres. Mater. Res. Bull. 102, 137–141 (2018). https://doi.org/10.1016/j.materresbull.2018.02.031

    Article  Google Scholar 

  142. Wongpratat, U., Maensiri, S., Swatsitang, E.: EXAFS analysis of cations distribution in structure of Co 1–x Ni x Fe 2 O 4 nanoparticles obtained by hydrothermal method in aloe vera extract solution. Appl. Surf. Sci. 380, 60–66 (2016). https://doi.org/10.1016/j.apsusc.2016.02.082

    Article  ADS  Google Scholar 

  143. Ndlovu, B., Msomi, J.Z., Moyo, T.: Mössbauer and electrical studies of Ni Co1-Fe2O4 nanoparticles. J. Alloys Compd. 745, 187–195 (2018). https://doi.org/10.1016/j.jallcom.2018.02.122

    Article  Google Scholar 

  144. Srinivasamurthy, K.M., Angadi V, J., Kubrin, S.P., Matteppanavar, S., Sarychev, D.A., Kumar, P.M., Azale, H.W., Rudraswamy, B.: Tuning of ferrimagnetic nature and hyperfine interaction of Ni2+ doped cobalt ferrite nanoparticles for power transformer applications. Ceram. Int. 44, 9194–9203 (2018). https://doi.org/10.1016/j.ceramint.2018.02.129

  145. Abdulhamid, Z.M., Sattar, A.A., Darwish, A.S., Ghani, A.A.: Correlation of cation distribution with structure, magnetic and electrical properties of ultrafine Ni2+-doped CoFe2O4. Appl. Phys. A. 126, 807 (2020). https://doi.org/10.1007/s00339-020-03997-2

    Article  ADS  Google Scholar 

  146. Kesavamoorthi, R., Raja, C.R.: Structural and magnetic properties of cobalt and copper ions mixed nickel ferrite nanoparticles. J. Supercond. Nov. Magn. 30, 2535–2540 (2017). https://doi.org/10.1007/s10948-017-4055-z

    Article  Google Scholar 

  147. Kokare, M.K., Jadhav, N.A., Singh, V., Rathod, S.M.: Effect of Sm3+ substitution on the structural and magnetic properties of Ni-Co nanoferrites. Opt. Laser Technol. 112, 107–116 (2019). https://doi.org/10.1016/j.optlastec.2018.10.045

    Article  ADS  Google Scholar 

  148. Tukaram, V., Shinde, S.S., Borade, R.B., Kadam, A.B.: Study of cation distribution, structural and electrical properties of Al–Zn substituted Ni–Co ferrite. Phys. B Condens. Matter. 577, 411783 (2020). https://doi.org/10.1016/j.physb.2019.411783

    Article  Google Scholar 

  149. Ramakrishna, A., Murali, N., Mammo, T.W., Samatha, K., Veeraiah, V.: Structural and DC electrical resistivity, magnetic properties of Co 0.5 M 0.5 Fe 2 O 4 (M= Ni, Zn, and Mg) ferrite nanoparticles. Phys. B Condens. Matter. 534, 134–140 (2018). https://doi.org/10.1016/j.physb.2018.01.033

  150. Srinivasamurthy, K.M., Angadi, V.J., Kubrin, S.P., Matteppanavar, S., Kumar, P.M., Rudraswamy, B.: Evidence of enhanced ferromagnetic nature and hyperfine interaction studies of Ce-Sm doped Co-Ni ferrite nanoparticles for microphone applications. Ceram. Int. 44, 18878–18885 (2018). https://doi.org/10.1016/j.ceramint.2018.07.123

    Article  Google Scholar 

  151. Pawar, D.B., Khirade, P.P., Vinayak, V., Ravangave, L.S., Rathod, S.M.: Sol–gel auto-ignition fabrication of Gd3+ incorporated Ni0.5Co0.5Fe2O4 multifunctional spinel ferrite nanocrystals and its impact on structural, optical and magnetic properties. SN Appl. Sci. 2, 1713 (2020). https://doi.org/10.1007/s42452-020-03505-4

  152. Sharma, R., Thakur, P., Kumar, M., Thakur, N., Negi, N.S., Sharma, P., Sharma, V.: Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route. J. Alloys Compd. 684, 569–581 (2016). https://doi.org/10.1016/j.jallcom.2016.05.200

    Article  Google Scholar 

  153. Mohapatra, J., Xing, M., Elkins, J., Beatty, J., Liu, J.P.: Size-dependent magnetic hardening in CoFe2O4 nanoparticles: effects of surface spin canting. J. Phys. D: Appl. Phys. 53, 504004 (2020). https://doi.org/10.1088/1361-6463/abb622

    Article  Google Scholar 

  154. Marx, J., Huang, H., M. Salih, K.S., Thiel, W.R., Schünemann, V.: Spin canting in ferrite nanoparticles. Hyperfine Interact. 237, 41 (2016). https://doi.org/10.1007/s10751-016-1241-5

  155. Yang, R., Yu, X., Li, H., Wang, C., Wu, C., Zhang, W., Guo, W.: Effect of Mg doping on magnetic induction heating of Zn–Co ferrite nanoparticles. J. Alloys Compd. 851, 156907 (2021). https://doi.org/10.1016/j.jallcom.2020.156907

    Article  Google Scholar 

  156. Smart, J.S.: The Néel theory of ferrimagnetism. Am. J. Phys. 23, 356–370 (1955). https://doi.org/10.1119/1.1934006

    Article  ADS  Google Scholar 

  157. Belaiche, Y., Minaoui, K., Ouadou, M., Elansary, M.: Preparation and study magnetic properties of the nanosized ferrite Zn0.5Mn0.5Fe1.95Mo0.02Tb0.01Sm0.01Gd0.01O4 with negative magnetization. A new result. Phase. Transit. 0, 1–17 (2021). https://doi.org/10.1080/01411594.2021.1986041

  158. Topkaya, R., Baykal, A., Demir, A.: Yafet–Kittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy. J. Nanoparticle Res. 15, 1359 (2013). https://doi.org/10.1007/s11051-012-1359-6

    Article  ADS  Google Scholar 

  159. Chandekar, K.V., Shkir, M., Alfaify, S.: Materials Science & Engineering B Tuning the optical band gap and magnetization of oleic acid coated CoFe 2 O 4 NPs synthesized by facile hydrothermal route. Mater. Sci. Eng. B. 259, 114603 (2020). https://doi.org/10.1016/j.mseb.2020.114603

    Article  Google Scholar 

  160. Jovanović, S., Spreitzer, M., Tramšek, M., Trontelj, Z., Suvorov, D.: Effect of oleic acid concentration on the physicochemical properties of cobalt ferrite nanoparticles. J. Phys. Chem. C. 118, 13844–13856 (2014). https://doi.org/10.1021/jp500578f

    Article  Google Scholar 

  161. Ayyappan, S., Gnanaprakash, G., Panneerselvam, G., Antony, M.P., Philip, J.: Effect of surfactant monolayer on reduction of Fe 3 O 4 nanoparticles under vacuum. J. Phys. Chem. C. 112, 18376–18383 (2008). https://doi.org/10.1021/jp8052899

    Article  Google Scholar 

  162. Maaz, K., Mumtaz, A., Hasanain, S.K., Bertino, M.F.: Temperature dependent coercivity and magnetization of nickel ferrite nanoparticles. J. Magn. Magn. Mater. 322, 2199–2202 (2010). https://doi.org/10.1016/j.jmmm.2010.02.010

    Article  ADS  Google Scholar 

  163. Wang, S., Yu, J.: Magnetic behaviors of 3d transition metal-doped silicane: a first-principle study. J. Supercond. Nov. Magn. 31, 2789–2795 (2018). https://doi.org/10.1007/s10948-017-4532-4

    Article  Google Scholar 

  164. Sun, M., Ren, Q., Zhao, Y., Wang, S., Yu, J., Tang, W.: Magnetism in transition metal-substituted germanane: a search for room temperature spintronic devices. J. Appl. Phys. 119, 143904 (2016). https://doi.org/10.1063/1.4945771

    Article  ADS  Google Scholar 

  165. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A. 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  166. Yu, W., Zhu, Z., Niu, C.-Y., Li, C., Cho, J.-H., Jia, Y.: Dilute magnetic semiconductor and half-metal behaviors in 3d transition-metal doped black and blue phosphorenes: a first-principles study. Nanoscale Res. Lett. 11, 77 (2016). https://doi.org/10.1186/s11671-016-1296-x

    Article  ADS  Google Scholar 

  167. Zheng, F., Zhang, C., Luan, H., Li, S., Wang, P.: Design of half-metallic properties induced by 2p impurities in ZnO nanosheet. J. Solid State Chem. 200, 299–304 (2013). https://doi.org/10.1016/j.jssc.2013.02.004

    Article  ADS  Google Scholar 

  168. Huzayyin, A., Boggs, S., Ramprasad, R.: Density functional analysis of chemical impurities in dielectric polyethylene. IEEE Trans. Dielectr. Electr. Insul. 17, 926–930 (2010). https://doi.org/10.1109/TDEI.2010.5492268

    Article  Google Scholar 

  169. Mulwa, W.M., Ouma, C.N.M., Onani, M.O., Dejene, F.B.: Energetic, electronic and optical properties of lanthanide doped TiO2: an ab initio LDA+U study. J. Solid State Chem. 237, 129–137 (2016). https://doi.org/10.1016/j.jssc.2016.02.003

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Belaiche.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hssaini, A., Belaiche, M., Elansary, M. et al. Magnetic and Structural Properties of Novel-Coated Ni0.5Co0.5Fe1.6Gd0.2Mo0.1Sm0.1O4 Spinel Ferrite Nanomaterial: Experimental and Theoretical Investigations. J Supercond Nov Magn 35, 2799–2820 (2022). https://doi.org/10.1007/s10948-022-06307-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06307-4

Keywords

Navigation