Skip to main content
Log in

Cation distribution and magnetic properties of Zn2+ substituted MnFe2O4 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mn–Zn ferrite nanoparticles of the composition Mn1−xZnxFe2O4 (x = 0, 0.2, 0.4, 0.6, 0.8 and 1) have been synthesized by a low temperature chemical co-precipitation method. The X-ray diffraction pattern confirms the synthesis of single crystalline phase of Mn–Zn ferrite nanoparticles. Crystallite size is of the order of 4–8 nm for all these samples. The lattice parameter decreases from 8.5075 to 8.4281 Å with increase in zinc concentration. Formation of the spinel Mn–Zn ferrite was also supported by Fourier Transform Infrared Spectroscopy. Transmission electron microscopy was used to confirm the nanocrystalline nature of the samples. The magnetic measurements show superparamagnetic nature of the samples with zero remanence and coercivity. The saturation magnetization increases with increase in zinc concentration, reaches maximum at x = 0.4 and decreases for further increase in zinc concentration. The variation in saturation magnetization can be correlated to the modifications in cation distribution as a result of replacement of Mn-ion by Zn-ion thereby modifying the superexchange interaction between the A and B sublattices. Electron paramagnetic resonance (EPR) studies revealed that superexchange interaction between magnetic ions with oxygen ion and magnetic dipole interactions among nanoparticles are the two main factors, which determine EPR resonance parameters. The Curie temperature for MnFe2O4 nanoparticles is 394 °C and decreases to 95 °C for x = 0.6. Thus the relative composition of Mn and Zn can tune the Curie temperature of Mn–Zn ferrite nanoparticles which is very important for preparing the temperature sensitive ferrofluid that has the applications in the thermal management of the electronic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.R. Syue, F.J. Wei, C.S. Chou, C.M. Fu, Thin Solid Film 519, 8303–8306 (2011)

    Article  Google Scholar 

  2. J. Azadmanjiri, J. Non Cryst. Solids 353, 4170–4173 (2007)

    Article  Google Scholar 

  3. J. Topfer, A. Angermann, Mater. Chem. Phys. 129, 337–342 (2011)

    Article  Google Scholar 

  4. S.M. Attia, Egypt. J. Solids 29(2), 329–340 (2006)

    Google Scholar 

  5. Y. Xuan, Q. Li, G. Yang, J. Magn. Magn. Mater. 312, 464–469 (2007)

    Article  Google Scholar 

  6. E. Calderon-Ortiz, O. Pearles-Perez, P. Voyles, G. Gutierrez, M.S. Tomar, Magnetoelectronics 40(4–5), 677–680 (2009)

    Article  Google Scholar 

  7. E.V. Gopalan, I.A. Al-Omari, K.A. Malini, P.A. Joy, D.S. Kumar, Y. Yoshida, M.R. Anantharaman, J. Magn. Magn. Mater. 321, 1092–1099 (2009)

    Article  Google Scholar 

  8. S.G. Dhotre, L.N. Sing, Adv. Appl. Sci. Res. 5(1), 146–149 (2014)

    Google Scholar 

  9. R. Desai, V. Davariya, K. Parekh, R.V. Upadyay, Pramana 73(4), 765–780 (2009)

    Article  Google Scholar 

  10. P. Hu, H.B. Yang, D.A. Pan, H. Wang, J.J. Tian, S.G. Zhang, X.F. Wang, A.A. Volinsky, J. Magn. Magn. Mater. 322, 173–177 (2010)

    Article  Google Scholar 

  11. D.S. Kumar, K.C. Mouli, Int. J. Nanotechnol. Appl. 4(1), 51–59 (2010)

    Google Scholar 

  12. N. Kumar, V. Kumar, M. Arora, M. Sharma, B. Singh, R.P. Pant, Indian J. Eng. Mater. Sci. 16, 410–414 (2009)

    Google Scholar 

  13. D. Makovec, A. Kodre, I. Arcon, M. Drofenik, J. Nanopart. Res. 11(5), 1145–1158 (2009). doi:10.1007/s11051-008-9510-0

    Article  Google Scholar 

  14. E.M.M. Ewais, M.M. Hessien, A.A. El-Geassy, J. Aust. Ceram. Soc. 44(1), 57–62 (2008)

    Google Scholar 

  15. G.V.S. Kundaikar, Carbon Sci. Technol. 5(2), 275–284 (2013)

    Google Scholar 

  16. S. Kumar, T.J. Shinde, P.N. Vasembekar, Adv. Mater. Lett. 4(5), 373–377 (2013)

    Article  Google Scholar 

  17. G. Gnanaprakash, J. Philip, B. Raj, Mater. Lett. 61, 4545–4548 (2007)

    Article  Google Scholar 

  18. G.S. Shahane, A. Kumar, M. Arora, R.P. Pant, K. Lal, J. Magn. Magn. Mater. 322, 1015–1019 (2010)

    Article  Google Scholar 

  19. G.S. Shahane, K.V. Zipare, R.P. Pant, Magnetohydrodynamics 49(3–4), 317–321 (2013)

    Google Scholar 

  20. K. Zipare, J. Dhumal, S. Bandgar, V. Mathe, G. Shahane, J. Nanosci. Nanoeng. 1(3), 178–182 (2015)

    Google Scholar 

  21. M.B. Mohamed, M. Yehia, J. Alloys Compd. 615, 181–187 (2014)

    Article  Google Scholar 

  22. A.B. Navale, N.S. Kanhe, K.R. Patil, S.V. Bhoraskar, V.L. Mathe, A.K. Das, J. Alloys Compd. 509, 4404–4413 (2011)

    Article  Google Scholar 

  23. T.J. Shinde, A.B. Gadkari, P.N. Vasambekar, J. Magn. Magn. Mater. 333, 152–155 (2013)

    Article  Google Scholar 

  24. C. Venkataraju, G. Satishkumar, K. Sivakumar, J. Magn. Magn. Mater. 322, 230–233 (2010)

    Article  Google Scholar 

  25. K.G. Kanade, D.P. Amalnerkar, H.S. Potdar, B.B. Kale, Mater. Chem. Phys. 117, 187–191 (2009)

    Article  Google Scholar 

  26. R. Iyer, R. Desai, R.V. Upadhyay, Bull. Mater. Sci. 32(2), 141–147 (2009)

    Article  Google Scholar 

  27. M. Chand, A. Kumar, S. Annveer, A. Kumar, R.P.Pant Shankar, Indian J. Eng. Mater. Sci. 18, 385–389 (2011)

    Google Scholar 

  28. C.F. Zhang, X.C. Zhong, H.Y. Yu, Z.W. Liu, D.C. Zeng, Phys. B 404, 2327–2331 (2009)

    Article  Google Scholar 

  29. U.S. Sharma, R.N. Sharma, R. Shah, J. Eng. Res. Appl. 4(8), 14–17 (2014)

    Google Scholar 

  30. M.Y. Rafique, P.L. Qing, Q.U.A. Javed, M.Z. Iqbal, Q.H. Mei, M.H. Farooq, G.Z. Gang, M. Tanveer, Chin. Phys. B 22(10), 107101–107107 (2013)

    Article  Google Scholar 

  31. R. Gimenes, M.R. Baldissera, M.R.A. da Silva, C.A. da Silva, D.A.W. Soares, L.A. Perazolli, M.R. da Silva, M.A. Zaghete, Ceram. Int. 38, 741–746 (2012)

    Article  Google Scholar 

  32. R. Arunmurugan, G. Vaidyanathan, S. Sendhilnathan, B. Jeyadeven, J. Magn. Magn. Mater. 298, 83–94 (2006)

    Article  Google Scholar 

  33. G.U. Kulkarni, K.R. Kannan, T. Arunarkavalli, C.N.R. Rao, Phys. Rev. B 49(1), 724–727 (1994)

    Article  Google Scholar 

  34. N.T. Lan, T.D. Hien, N.P. Duong, D.V. Truong, J. Korean Phys. Soc. 52, 1522–1525 (2008)

    Article  Google Scholar 

  35. A. Kumar, P.S. Rana, M.S. Yadav, R.P. Pant, Ceram. Int. 41, 1297–1302 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The author (GSS) is thankful to the Science and Engineering Research Board, Department of Science and Technology, Government of India, New Delhi, for the financial assistance under the Project Grant SB/S2/CMP-06/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Shahane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahane, G.S., Zipare, K.V., Bandgar, S.S. et al. Cation distribution and magnetic properties of Zn2+ substituted MnFe2O4 nanoparticles. J Mater Sci: Mater Electron 28, 4146–4153 (2017). https://doi.org/10.1007/s10854-016-6034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6034-8

Keywords

Navigation