Skip to main content
Log in

A Review on the Development of XRD in Ferrite Nanoparticles

  • Review
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In the present study, an overview of the aspects of X-ray diffraction (XRD) in ferrite has been explored. Ferrite nanoparticles have a wide range of applications in various fields. XRD data could be used to measure the phases, crystal structure, and related parameters of ferrites. It can also determine the effect of doping and substitution on the crystal structure of the ferrite and the strain on the crystal lattice due to these variations. Cation distribution, bond length, interionic distances, bond angles, and hopping length can be calculated using XRD for the fruitful discussion of various properties of ferrite. From this study, it can be revealed that XRD is the ideal technique to elucidate not only the crystal structure but also the magnetic, electrical, optical, elastic behavior which could be explained by analyzing the XRD data systematically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li, H., et al.: Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Biomaterials. 35, 3666–3677 (2014)

  2. Arantes, A.C.C., Silva, L.E., Wood, D.F., et al.: Bio-based thin films of cellulose nanofibrils and magnetite for potential application in green electronics. Carbohydr. Polym. 207, 100–107 (2019)

    Article  Google Scholar 

  3. Freire, T.M., Dutra, L.M.U., Queiroz, D.C., et al.: Fast ultrasound assisted synthesis of chitosan-based magnetite nanocomposites as a modified electrode sensor. Carbohydr. Polym. 151, 760–769 (2016)

    Article  Google Scholar 

  4. Luong, D., Sau, S., et al.: Polyvalent folate-dendrimer-coated iron oxide theranostic nanoparticles for simultaneous magnetic resonance imaging and precise cancer cell targeting. Biomacromol 18, 1197–1209 (2017)

    Article  Google Scholar 

  5. Hornyak, G.L., Tibbals, H.F., Dutta, J., Moore, J.J.: Introduction to nanoscience and nanotechnology. CRC Press. 1st ed. (2009)

  6. Kulkarni, S.K.: Nanotechnology: principles and practices. Capital Publ Company. 2nd ed. (2011)

  7. Cullity, B.D., Stock, S.R.: Elements of X-ray diffraction. Pearson Publ. 3rd ed. (2014)

  8. Waldron, R.D.: Infrared spectra of ferrites. Phys. Rev. 99, 1727–1735 (1955)

    Article  ADS  Google Scholar 

  9. Bird, S.M., Galloway, J.M., Rawlings, A.E., et al.: Taking a hard line with biotemplating: cobalt -doped magnetite magnetic nanoparticle arrays. Nanoscale 7, 7340–7351 (2015)

    Article  ADS  Google Scholar 

  10. Supriya, S., Kumar, S., Kar, M.: Correlation between AC and DC transport properties of Mn substituted cobalt ferrite. J. Appl. Phys. 120, 215106 (2016)

  11. Rahman, M.T., Ramana, V.C.: Impedance spectroscopic characterization of gadolinium substituted cobalt ferrite ceramics. J. Appl. Phys. 116, 164108 (2014)

  12. Jubb, A.M., Allen, H.C.: Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl. Mater. Interfaces 2, 2804–2812 (2010)

    Article  Google Scholar 

  13. Panda, R.K., Muduli, R., Jayarao, G., et al.: Effect of Cr3+ substitution on electric and magnetic properties of cobalt ferrite nanoparticles. J. Alloys Compd. 669, 19–28 (2016)

    Article  Google Scholar 

  14. Holder, C.F., Schaak, R.E.: Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 13, 7359–7365 (2019)

    Article  Google Scholar 

  15. Coey, J.M.D.: Magnetism and magnetic materials. Cambridge University Press. 7th ed. (2010)

  16. Walter, A., Billotey, C., Garofalo, A., et al.: Mastering shape and composition of dendronized iron oxide nanoparticles to tailor magnetic resonance imaging and hyperthermia. Chem. Mater. 26, 5252–5264 (2014)

    Article  Google Scholar 

  17. Mameli, V., Musinu, A., Ardu, A., et al.: Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles. Nanoscale 8, 10124–10137 (2016)

    Article  ADS  Google Scholar 

  18. Hashim, M., Ahmed, A., Ali, S.A. et al.: Structural, optical, elastic and magnetic properties of Ce and Dy doped cobalt ferrites. J. Alloys Compd. 834, 155089 (2020)

  19. Jeng, H.T., Guo, G.Y., Huang, D.J.: Charge-orbital ordering and verwey transition in magnetite. Phys. Rev. Lett. 93, 156403 (2004)

  20. Gore, S.K., Jadhav, S.S., Jadhav, V.V., et al.: The structural and magnetic properties of dual phase cobalt ferrite. Sci Rep. 7, 2524 (2017)

    Article  ADS  Google Scholar 

  21. Dar, M.A., Majid, K., Najar, M.H., et al.: Surfactant-assisted synthesis of polythiophene/ Ni0.5Zn0.5Fe2-xCexO4 ferrite composites: study of structural, dielectric and magnetic properties for EMI-shielding applications. Phys. Chem. Chem. Phys. 19, 10629–10643 (2017)

  22. Sanusi, K., Stone, J.M., Nyokong, T.: Nonlinear optical behaviour of indium-phthalocyanine tethered to magnetite or silica nanoparticles. New J. Chem. 39, 1665–1677 (2015)

    Article  Google Scholar 

  23. Noh, J., Hong, S., Yoon, C.M., et al.: Dual external field-responsive polyaniline-coated magnetite/silica nanoparticles for smart fluid applications. Chem. Commun. 53, 6645–6648 (2017)

    Article  Google Scholar 

  24. Tirupanyam, B.V., Srinivas, C., Meena, S.S., et al.: Investigation of structural and magnetic properties of co-precipitated Mn–Ni ferrite nanoparticles in the presence of α-Fe2O3 phase. J. Magn. Magn. Mater. 392, 101–106 (2015)

    Article  ADS  Google Scholar 

  25. Deepty, M., Srinivas, C., Kumar, E.R., et al.: XRD, EDX, FTIR and ESR spectroscopic studies of co-precipitated Mn–substituted Zn–ferrite nanoparticles. Ceram. Int. 45, 8037–8044 (2019)

  26. Andersen, H.L., Granados-Miralles, C., Saura-Múzquiz, M., et al.: Enhanced intrinsic saturation magnetization of ZnxCo1-xFe2O4 nanocrystallites with metastable spinel inversion. Mater. Chem. Front. 3, 668–679 (2019)

    Article  Google Scholar 

  27. Gao, Y., Wang, Z., et al.: Structural, elastic, thermal and soft magnetic properties of Ni-Zn-Li ferrites. J. Alloys Compd. 774, 1233–1242 (2019)

    Article  Google Scholar 

  28. Sinha, A., Dutta, A.: Structural, optical, and electrical transport properties of some rare-earth-doped nickel ferrites: a study on effect of ionic radii of dopants. J. Phys. Chem. Solids. 145, 109534 (2020)

  29. Pawar, R.A., Patange, S.M., Shitre, A.R., et al.: Crystal chemistry and single-phase synthesis of Gd3+ substituted Co–Zn ferrite nanoparticles for enhanced magnetic properties. RSC Adv. 8, 25258–25267 (2018)

    Article  ADS  Google Scholar 

  30. Hossain, M.D., Hossain, M.A., Khan, M.N.I., et al.: Frequency and temperature dependent magnetic properties with structural Rietveld refinement of Co0.25Zn0.75YxFe2-xO4 ferrites. J. Magn. Magn. Mater. 493, 165696 (2020)

  31. Patterson, A.L.: The scherrer formula for X-ray particle size determination. Phy. Rev. 56, 978–982 (1939)

  32. Jain, R., Luthra, V., Gokhale, S.: Dysprosium doping induced shape and magnetic anisotropy of Fe3-xDyxO4 (x=0.01–0.1). J. Magn. Magn. Mater. 414, 111–115 (2016)

  33. Atif, M., Idrees, M., Nadeem, M., et al.: Investigation on the structural, dielectric and impedance analysis of manganese substituted cobalt ferrite i.e., Co1-xMnxFe2O4 (0.0 ≤ x ≤ 0.4). RSC Adv. 6, 20876–20885 (2016)

  34. Abu-Elsaad, N.I., Nawara, A.S., Mazen, S.A.: Synthesis, structural characterization, and magnetic properties of Ni-Zn nanoferrites substituted with different metal ions (Mn2+ Co2+, and Cu2+). J. Phys. Chem. Solids. 146, 109620 (2020)

  35. Shirsath, S.E., Mane, M.L., Yasukawa, Y., et al.: Self-ignited high temperature synthesis and enhanced super-exchange interactions of Ho3+–Mn2+–Fe3+–O2- ferromagnetic nanoparticles. Phys. Chem. Chem. Phys. 16, 2347–2357 (2014)

    Article  Google Scholar 

  36. Issaoui, H., Benali, A., Bejar, M., et al.: Effect of Bi-substitution into the A-site of multiferroic La0.8Ca0.2FeO3 on structural, electrical and dielectric properties. RSC Adv. 10, 16132–16146 (2020)

  37. Jain, R., Luthra, V., Arora, M., Gokhale, S.: Infrared spectroscopic study of magnetic behaviour of dysprosium doped magnetite nanoparticles. J. Supercond. Nov. Magn. 32, 325–333 (2019)

    Article  Google Scholar 

  38. Zhang, J.M., Zhang, Y., Xu, K.W., Ji, V.: General compliance transformation relation and applications for anisotropic hexagonal metals. Solid State Commun. 139, 87–91 (2006)

    Article  ADS  Google Scholar 

  39. Maksoud, M.I.A.A., El-Sayyad, G.S., Abokhadra, A., et al.: Influence of Mg2+ substitution on structural, optical, magnetic and antimicrobial properties of Mn–Zn ferrite nanoparticles. J Mater Sci: Mater Electron 31, 2598–2616 (2020)

    Google Scholar 

  40. Mote, V.D., Purushotham, Y., Dole, B.N.: Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6, 1–8 (2012)

    Article  Google Scholar 

  41. Kakade, S.G., Kambale, R.C., Ramanna, C.V., Kolekar, Y.D.: Crystal strain, chemical bonding, magnetic and magnetostrictive properties of erbium (Er3+) ion substituted cobalt-rich ferrite (Co1.1Fe1.9-xErxO4). RSC Adv. 6, 33308- 33317 (2016)

  42. Shafi, P.M., Bose, A.C.: Impact of crystalline defects and size on X-ray line broadening: a phenomenological approach for tetragonal SnO2 nanocrystals. AIP Adv. 5, 057137 (2015)

  43. Alves, T.E., Pessoni, H.V., Junior, A.F.: The effect of Y3+ substitution on the structural, optical band-gap, and magnetic properties of cobalt ferrite nanoparticles. Phys. Chem. Chem. Phys. 19, 16395–16405 (2017)

    Article  Google Scholar 

  44. Kadam, R.H., Borade, R.B., Mane, M.L., et al.: Structural, mechanical, dielectric properties and magnetic interactions in Dy3+ substituted Co–Cu– Zn nanoferrites. RSC Adv. 10, 27911–27922 (2020)

    Article  ADS  Google Scholar 

  45. Amin, N., Hasan, M.S.U., Majeed, Z., et al.: Structural, electrical, optical and dielectric properties of yttrium substituted cadmium ferrites prepared by Co-Precipitation method. Ceram. Int. 46, 20798–20809 (2020)

    Article  Google Scholar 

  46. Aakash, G., Prasad, M., Mukherjee, S.: Dielectric and electrical characterizations of transition metal ions-doped nanocrystalline nickel ferrites. Appl. Phys. A. 125, 853 (2019)

  47. Batoo, K.M., Kumar, G., Yang, Y., et al.: Structural, morphological and electrical properties of Cd2+ doped MgFe2-xO4 ferrite nanoparticles. J. Alloys Compd. 726, 179–186 (2017)

    Article  Google Scholar 

  48. Lakshmiprasanna, H.R., Angadi, V.J., Babu, B.R., et al.: Effect of Pr3+ doping on the structural, elastic and magnetic properties of Mn–Zn ferrite nanoparticles prepared by solution combustion synthesis method. Chem. Data Coll. 24, 100273 (2019)

  49. Modi, K.B., Chhantbar, M.C., Sharma, P.U., Joshi. H.H.: Elastic constants determination for Fe3+ substituted YIG through infra-red spectroscopy and heterogeneous metal mixture rule. J. Mater. Sci. 40, 1247–1249 (2005)

  50. Deepty, M., Srinivas, C., Kumar, E.R., et al.: XRD, EDX, FTIR and ESR spectroscopic studies of co-precipitated Mn–substituted Zn–ferrite nanoparticles. Ceram. Int. 45, 8037–8044 (2019)

    Article  Google Scholar 

  51. Anupama, A.V., Rathod, V., Jali, V.M., Sahoo, B.: Composition dependent elastic and thermal properties of Li-Zn ferrites. J. Alloys Compd. 728, 1091–1100 (2017)

    Article  Google Scholar 

  52. Mazen, S.A., Elsayed, H.M., Abu-Elsaad, N.I.: A comparative study of different concentrations of (Co/Ni/Cu) effects on elastic properties of Li–Mn ferrite employing IR spectroscopy and ultrasonic measurement. Ceram. Int. 47, 26635–26642 (2021)

  53. Desai, S.S., Pawar, R.A., Jadhav, S.S.: Role of coupling divalent and tetravalent metal ions on the elastic and electric properties of CoFe2O4 ferrites prepared by sol–gel method. J Supercond Nov Magn. 29, 2635–2640 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richa Jain.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, R. A Review on the Development of XRD in Ferrite Nanoparticles. J Supercond Nov Magn 35, 1033–1047 (2022). https://doi.org/10.1007/s10948-022-06213-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06213-9

Keywords

Navigation