Skip to main content
Log in

New investigation of nanosized co-doped Gd-Sm anatase TiO2 structural, magnetic, optical, and first-principles study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

For the time we investigated the structural, optical and magnetic properties of (Sm, Gd) co-doped TiO2 anatase nanoparticles, in addition to Sm-doped TiO2 anatase nanoparticles using sol–gel method. The X-ray diffraction confirmed the single phase of tetragonal anatase with space group I41/amd, where the crystallite size was found 7.2 nm and 8.8 nm for Ti0.99Sm0.01O2 and Ti0.99Sm0.005Gd0.005O2, respectively. The Fourier-transform infrared spectra showed the basic absorption bands in tetragonal anatase structure with a stretching vibration around 500 cm−1 assigned to Ti–O–M, M = (Gd, Sm). Raman spectroscopy demonstrated the presence of the six active vibrational modes for anatase TiO2. Scanning electron microscopy analysis revealed that the particles are spherical in nature and agglomerated. Energy-dispersive X-ray spectroscopy confirmed the high purity of the as-prepared materials. The UV–VIS analysis showed absorption in visible range, due to the electronic transition, which has been confirmed theoretically, also a slight decrease in the band gap was noticed compared to the pure TiO2 anatase. The magnetic measurements reveal the existence of weak ferro or ferrimagnetic behavior. In this work, it is the first time that experimental and theoretical results prove that rare earth ions are incorporated into the sites of the TiO2 lattice without the formation of separate phases. In addition, the experimental work carried out has revealed the importance of surface area, crystallinity, light absorption, the presence of oxygen vacancies and structural defects on the magnetic and more particularly optical properties with the highlighting of the intermediate energy level between the valence and conduction bands. This study was complemented by first-principles calculations to investigate the effects of doping anatase TiO2 with the rare-earth elements Sm and Gd on its structural, optical and magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Not applicable.

Code availability

First-principles calculations were performed using the Wien2k package which can be ordered by filling out the registration form below: https://susi.theochem.tuwien.ac.at/order/wien2k_reg_form_new.html

References

  1. K. Yadav, Y. Dwivedi, N. Jaggi, J. Lumin. 158, 181 (2015)

    Google Scholar 

  2. R.Y. Korotkov, J.M. Gregie, B.W. Wessels, Appl. Phys. Lett. 80, 1731 (2002)

    ADS  Google Scholar 

  3. I.T. Yoon, J.H. Leem, T.W. Kang, J. Appl. Phys. 93, 2544 (2003)

    ADS  Google Scholar 

  4. P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Nat. Mater. 2, 673 (2003)

    ADS  Google Scholar 

  5. H.-S. Kim, L. Bi, G.F. Dionne, C.A. Ross, H.-J. Paik, Phys. Rev. B 77, 214436 (2008)

    ADS  Google Scholar 

  6. S. Naseem, W. Khan, S. Khan, S. Husain, A. Ahmad, J. Magn. Magn. Mater. 447, 155 (2018)

    ADS  Google Scholar 

  7. A. Luna-Flores, J.L. Sosa-Sánchez, M.A. Morales-Sánchez, R. Agustín-Serrano, J.A. Luna-López, Materials 10, 1447 (2017)

    ADS  Google Scholar 

  8. M. You, T.G. Kim, Y.-M. Sung, Cryst. Growth Des. 10, 983 (2010)

    Google Scholar 

  9. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, H. Koinuma, Science 291, 854 (2001)

    ADS  Google Scholar 

  10. Z.M. Tian, S.L. Yuan, S.Y. Yin, S.Q. Zhang, H.Y. Xie, J.H. Miao, Y.Q. Wang, J.H. He, J.Q. Li, J. Magn. Magn. Mater. 320, L5 (2008)

    ADS  Google Scholar 

  11. S. Paul, B. Choudhury, A. Choudhury, J. Alloys Compd. 601, 201 (2014)

    Google Scholar 

  12. A. Luna-Flores, M.A. Morales, R. Agustín-Serrano, R. Portillo, J.A. Luna-López, G.F. Pérez-Sánchez, A.D.H. la Luz, N. Tepale, Catalysts 9, 817 (2019)

    Google Scholar 

  13. N. Nithyaa, N.V. Jaya, J. Supercond. Nov. Magn. 31, 4117 (2018)

    Google Scholar 

  14. P. Trejo-García, R. Palomino-Merino, J. De la Cruz, J. E. Espinosa, R. Aceves Torres, J. J. Gervacio-Arciniega, E. Moreno-Barbosa, B. de Celis Alonso, E. Soto, R. Agustín-Serrano, I. Pérez López, M. Conti del Castillo, Ceram. Int. (2020)

  15. J. Liqiang, S. Xiaojun, X. Baifu, W. Baiqi, C. Weimin, F. Honggang, J. Solid State Chem. 177, 3375 (2004)

    ADS  Google Scholar 

  16. M. Pal, U. Pal, R.S. Gonzalez, E.S. Mora, P. Santiago, J. Nano Res. 5, 193 (2009)

    Google Scholar 

  17. A. Jafari, S. Khademi, M. Farahmandjou, A. Darudi, R. Rasuli, J. Electron. Mater. 47, 6901 (2018)

    ADS  Google Scholar 

  18. S.E. Arasi, J. Madhavan, M.V.A. Raj, J. Taibah Univ. Sci. 12, 186 (2018)

    Google Scholar 

  19. S. Paul, D. Banik, G.A. Ahmed, A. Choudhury 3, 3 (2016)

    Google Scholar 

  20. X. Chen, H. Cai, Q. Tang, Y. Yang, B. He, J. Mater. Sci. 49, 3371 (2014)

    ADS  Google Scholar 

  21. B. Choudhury, B. Borah, A. Choudhury, Mater. Sci. Eng. B 178, 239 (2013)

    Google Scholar 

  22. H. Eskandarloo, A. Badiei, M.A. Behnajady, G.M. Ziarani, Ultrason. Sonochem. 26, 281 (2015)

    Google Scholar 

  23. S.M. Adyani, M. Ghorbani, J. Rare Earths 36, 72 (2018)

    Google Scholar 

  24. B. Milićević, V. Đorđević, D. Lončarević, S.P. Ahrenkiel, M.D. Dramićanin, J.M. Nedeljković, Microporous Mesoporous Mater. 217, 184 (2015)

    Google Scholar 

  25. D. de la Cruz, J.C. Arévalo, G. Torres, R.G.B. Margulis, C. Ornelas, A. Aguilar-Elguézabal, Catal. Today 166, 152 (2011)

    Google Scholar 

  26. Z.M. El-Bahy, A.A. Ismail, R.M. Mohamed, J. Hazard. Mater. 166, 138 (2009)

    Google Scholar 

  27. X. Niu, S. Li, H. Chu, J. Zhou, J. Rare Earths 29, 225 (2011)

    Google Scholar 

  28. J. Shi, J. Zheng, P. Wu, J. Hazard. Mater. 161, 416 (2009)

    Google Scholar 

  29. M.B. Chobba, M. Messaoud, M.L. Weththimuni, J. Bouaziz, M. Licchelli, F. De Leo, C. Urzì, Environ. Sci. Pollut. Res. 26, 32734 (2019)

    Google Scholar 

  30. S. Bagheri, K. Shameli, S.B.A. Hamid, J. Chem. (2012). https://doi.org/10.1155/2013/848205

    Article  Google Scholar 

  31. D. Toloman, A. Popa, M. Stefan, O. Pana, T.D. Silipas, S. Macavei, L. Barbu-Tudoran, Mater. Sci. Semicond. Process. 71, 61 (2017)

    Google Scholar 

  32. G.V. Khade, M.B. Suwarnkar, N.L. Gavade, K.M. Garadkar, J. Mater. Sci. Mater. Electron. 27, 6425 (2016)

    Google Scholar 

  33. H.T. Gao, W.C. Liu, G.J. Liu, Adv. Mater. Res. 490–495, 3272–3276 (2012)

    Google Scholar 

  34. Q. Jiang, S.H. Zhang, J.C. Li, Solid State Commun. 130, 581 (2004)

    ADS  Google Scholar 

  35. S. Paul, P. Chetri, B. Choudhury, G.A. Ahmed, A. Choudhury, J. Colloid Interface Sci. 439, 54 (2015)

    ADS  Google Scholar 

  36. N. Rathore, R.K. Shukla, K.C. Dubey, A. Kulshreshtha, Mater. Today Proc. 29, 861–865 (2020)

    Google Scholar 

  37. R. Sharma, A. Sarkar, R. Jha, A.K. Sharma, D. Sharma, Int. J. Appl. Ceram. Technol. 17, 1400 (2020)

    Google Scholar 

  38. R. Messemeche, H. Saidi, A. Attaf, Y. Benkhetta, S. Chala, R. Azizi, R. Nouadji, Surf. Interfaces 19, 100482 (2020)

    Google Scholar 

  39. P.M. Kibasomba, S. Dhlamini, M. Maaza, C.-P. Liu, M.M. Rashad, D.A. Rayan, B.W. Mwakikunga, Results Phys. 9, 628 (2018)

    ADS  Google Scholar 

  40. J. Singh, S. Sharma, S. Sharma, R.C. Singh, Optik 182, 538 (2019)

    ADS  Google Scholar 

  41. F. Jing, S. Harako, S. Komuro, X. Zhao, J. Phys. Appl. Phys. 42, 085109 (2009)

    ADS  Google Scholar 

  42. V. Kiisk, V. Reedo, M. Karbowiak, M.G. Brik, I. Sildos, J. Phys. Appl. Phys. 42, 125107 (2009)

    ADS  Google Scholar 

  43. H. Hafez, M. Saif, M.S.A. Abdel-Mottaleb, J. Power Sources 196, 5792 (2011)

    ADS  Google Scholar 

  44. B. Keerthana, J. Madhavan, M.A. Thalapathi, Int. J. Eng. Dev. Res. 3(2), 726–731 (2015)

    Google Scholar 

  45. E.O. Oseghe, P.G. Ndungu, S.B. Jonnalagadda, J. Photochem. Photobiol. Chem. 312, 96 (2015)

    Google Scholar 

  46. Y. Zhao, C. Li, X. Liu, F. Gu, H. Jiang, W. Shao, L. Zhang, Y. He, Mater. Lett. 61, 79 (2007)

    Google Scholar 

  47. J.K. Koh, J. Kim, B. Kim, J.H. Kim, E. Kim, Adv. Mater. 23, 1641 (2011)

    Google Scholar 

  48. E.S. Agorku, B.B. Mamba, A.C. Pandey, A.K. Mishra, J. Nanomater. (2014). https://doi.org/10.1155/2014/289150

    Article  Google Scholar 

  49. A.K. Tripathi, M.K. Singh, M.C. Mathpal, S.K. Mishra, A. Agarwal, J. Alloys Compd. 549, 114 (2013)

    Google Scholar 

  50. V.O. Ndabankulu, S. Maddila, S.B. Jonnalagadda, Can. J. Chem. 97, 672 (2019)

    Google Scholar 

  51. P. Goswami, J.N. Ganguli, Dalton Trans. 42, 14480 (2013)

    Google Scholar 

  52. J.M. Lagaron, J. Mater. Sci. 37, 4101 (2002)

    ADS  Google Scholar 

  53. J. Otegui, J.F. Vega, S. Martín, V. Cruz, A. Flores, C. Domingo, J. Martínez-Salazar, J. Mater. Sci. 42, 1046 (2007)

    ADS  Google Scholar 

  54. D.J. Arenas, T. Jegorel, C. Knab, L.V. Gasparov, C. Martin, D.M. Pajerowski, H. Kohno, M.W. Lufaso, Phys. Rev. B 86, 144116 (2012)

    ADS  Google Scholar 

  55. Q. Xiao, Z. Si, Z. Yu, G. Qiu, Mater. Sci. Eng. B 137, 189 (2007)

    Google Scholar 

  56. Q. Xiao, Z. Si, J. Zhang, C. Xiao, X. Tan, J. Hazard. Mater. 150, 62 (2008)

    Google Scholar 

  57. Y. Lin, Z. Jiang, R. Zhang, C. Zhu, X. Hu, X. Zhang, H. Zhu, J. Catal. 309, 115 (2014)

    Google Scholar 

  58. M.G. Brik, I. Sildos, V. Kiisk, Phys. B Condens. Matter 405, 2450 (2010)

    ADS  Google Scholar 

  59. P.K. Singh, S. Mukherjee, C.K. Ghosh, S. Maitra, P.K. Singh, S. Mukherjee, C.K. Ghosh, S. Maitra, Cerâmica 63, 549 (2017)

    Google Scholar 

  60. N. Bhakta, T. Inamori, R. Shirakami, Y. Tanioku, K. Yoshimura, P.K. Chakrabarti, Mater. Res. Bull. 104, 6 (2018)

    Google Scholar 

  61. B. Choudhury, A. Choudhury, Curr. Appl. Phys. 13, 1025 (2013)

    ADS  Google Scholar 

  62. P. Ghigna, A. Speghini, M. Bettinelli, J. Solid State Chem. 180, 3296 (2007)

    ADS  Google Scholar 

  63. Y. Xin, H. Liu, J. Solid State Chem. 184, 3240 (2011)

    ADS  Google Scholar 

  64. L.G. Devi, S.G. Kumar, Appl. Surf. Sci. 261, 137 (2012)

    ADS  Google Scholar 

  65. S. Obregón, A. Kubacka, M. Fernández-García, G. Colón, J. Catal. 299, 298 (2013)

    Google Scholar 

  66. V. Ðorđević, B. Milićević, M.D. Dramićanin, Titan, in Dioxide, ed. by M. Janus (InTech, London, 2017)

    Google Scholar 

  67. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009)

    Google Scholar 

  68. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  69. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    ADS  MathSciNet  Google Scholar 

  70. K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011)

    Google Scholar 

  71. J.D. Head, M.C. Zerner, Chem. Phys. Lett. 122, 264 (1985)

    ADS  Google Scholar 

  72. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran , L.D. Marks, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria). ISBN 3-9501031-1-2 (2018)

  73. V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44, 943 (1991)

    ADS  Google Scholar 

  74. V.I. Anisimov, O. Gunnarsson, Phys. Rev. B 43, 7570 (1991)

    ADS  Google Scholar 

  75. H. Tang, H. Berger, P.E. Schmid, F. Lévy, G. Burri, Solid State Commun. 87, 847 (1993)

    ADS  Google Scholar 

  76. V. Ney, S. Ye, T. Kammermeier, K. Ollefs, F. Wilhelm, A. Rogalev, S. Lebègue, A.L. da Rosa, A. Ney, Phys. Rev. B 85, 235203 (2012)

    ADS  Google Scholar 

  77. C.J. Howard, T.M. Sabine, F. Dickson, Acta Crystallogr. B 47, 462 (1991)

    Google Scholar 

  78. C.G. Van de Walle, J. Neugebauer, J. Appl. Phys. 95, 3851 (2004)

    ADS  Google Scholar 

  79. S.M. Alay-e-Abbas, S. Nazir, A. Shaukat, Phys. Chem. Chem. Phys. 18, 23737 (2016)

    Google Scholar 

  80. M. Kumar, N. Umezawa, W. Zhou, M. Imai, J. Mater. Chem. A 5, 25293 (2017)

    Google Scholar 

  81. R. Sundararaman, Y. Ping, J. Chem. Phys. 146, 104109 (2017)

    ADS  Google Scholar 

  82. H.-P. Komsa, T.T. Rantala, A. Pasquarello, Phys. Rev. B 86, 045112 (2012)

    ADS  Google Scholar 

  83. R. Asahi, Y. Taga, W. Mannstadt, A.J. Freeman, Phys. Rev. B 61, 7459 (2000)

    ADS  Google Scholar 

  84. C. Stampfl, C.G. Van de Walle, Phys. Rev. B 59, 5521 (1999)

    ADS  Google Scholar 

  85. Y. Cao, Z. Zhao, J. Yi, C. Ma, D. Zhou, R. Wang, C. Li, J. Qiu, J. Alloys Compd. 554, 12 (2013)

    Google Scholar 

  86. W. Chen, P. Yuan, S. Zhang, Q. Sun, E. Liang, Y. Jia, Phys. B Condens. Matter 407, 1038 (2012)

    ADS  Google Scholar 

  87. W.M. Mulwa, C.N.M. Ouma, M.O. Onani, F.B. Dejene, J. Solid State Chem. 237, 129 (2016)

    ADS  Google Scholar 

  88. Y. Wang, D.J. Doren, Solid State Commun. 136, 142 (2005)

    ADS  Google Scholar 

  89. Z. Zhao, Q. Liu, J. Phys. Appl. Phys. 41, 085417 (2008)

    ADS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

MB: conceptualization, investigation, methodology, supervision, validation, resources, writing–review and editing. IG: investigation, synthesis, characterization, writing–original draft. CAF: investigation, software, visualization, writing. ME: software, visualization, characterization, writing. IB: experimental magnetic measurements.

Corresponding author

Correspondence to Mohammed Belaiche.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guetni, I., Belaiche, M., Ahmani Ferdi, C. et al. New investigation of nanosized co-doped Gd-Sm anatase TiO2 structural, magnetic, optical, and first-principles study. Appl. Phys. A 126, 721 (2020). https://doi.org/10.1007/s00339-020-03919-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03919-2

Keywords

Navigation