Skip to main content
Log in

Synthesis and characterization of nickel cobalt ferrite (Ni1−xCoxFe2O4) nano particles by co-precipitation method with citrate as chelating agent

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The main objective of this study deals with the synthesis and characterization of Ni1−xCoxFe2O4 (x = 0.3, 0.5, 0.7) by a facile novel co-precipitation method using citrate as chelating agent. TG/DT analysis was performed for the as-prepared sample, which shows the calcination is necessary for the formation of pure nickel cobalt ferrite nanoparticles. The synthesized powders were calcinated at 400, 600 and 800 °C for 3 h in air and were characterized by X-ray diffraction (XRD) which confirmed the formation of cubic spinel structure of ferrites. From XRD it confirms that Ni1−xCoxFe2O4 nano particles belong to spinel type lattice of space group Fd3m. The linear relationship between particle size and calcination temperatures of Ni1−xCoxFe2O4 nanoparticles was observed. The Ni1−xCoxFe2O4 nano particles calcinated at 600 °C were further characterized by using techniques field emission scanning electron microscope (FESEM) with EDAX, field emission transmission electron microscope (FETEM) with SAED pattern, dynamic light scattering zeta potential, X-ray photoelectron spectroscopy and cyclic voltammetry (CV). The surface morphology of Ni1−xCoxFe2O4 studied through FESEM and FETEM indicate that the particles are found crystalline and are in cubic shape. EDAX analysis revealed the presence of Ni, Co, Fe and O. Zeta potential exposes the good stability of the prepared Ni1−xCoxFe2O4 nanoparticles. Capacitance value 865 Fg−1 was observed for the scanning rate of 2 mV s−1 from the CV study and concluded it can be used for super capacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Wang, F. Zhang, W. Zhang, X. Wang, Z. Lu, Z. Qian, Y. Sui, D. Dong, W. Su, J. Cryst. Growth (2006). doi:10.1016/j.jcrysgro.2006.05.002

    Google Scholar 

  2. K. Nejati, R. Zabihi, Chem. Cent. J. (2012). doi:10.1186/1752-153X-6-23

    Google Scholar 

  3. S. Mishra, N. Karak, T.K. Kundu, D. Das, N. Maity, D. Chkravorty, Mater. Lett. 60, 1111 (2006)

    Article  Google Scholar 

  4. T.R. Mandlimath, B. Gopal, J. Mol. Catal. A Chem. 350, 9–15 (2011)

    Article  Google Scholar 

  5. P. Derakhshi, S.A. Khorrami, R. Lotfi, Appl. Sci. J. 16(2), 156–159 (2012)

    Google Scholar 

  6. K. Krieble, T. Schaeffer, J. Appl. Phys. 97, 10F101 (2005)

    Article  Google Scholar 

  7. L. Zhao, Y. Cui, H. Yang, L. Yu, W. Jin, S. Feng, Mater. Lett. 60, 104 (2006)

    Article  Google Scholar 

  8. A. Thakur, P. Mathur, M. Singh, J. Phys. Chem. Solids 68, 378 (2007)

    Article  Google Scholar 

  9. G. Kumar, J. Chand, S. Verma, M. Singh, J. Phys. D Appl. Phys. 42, 155001 (2009)

    Article  Google Scholar 

  10. S.K. Pradhan, S. Bid, M. Gateshki, V. Petkov, Mater. Chem. Phys. 93, 224 (2005)

    Article  Google Scholar 

  11. D.S. Jung, Y.C. Kang, J. Magn. Magn. Mater. 321, 619 (2009)

    Article  Google Scholar 

  12. L. Chen, H. Dai, Y. Shen, J. Bai, J. Alloys Compd. 491, 33 (2010)

    Article  Google Scholar 

  13. Y. Koseoğlu, A. Baykal, F. Gozuak, H. Kavas, Polyhedron 28, 2887 (2009)

    Article  Google Scholar 

  14. M.H. Sousa, E. Hasmonay, J. Depeyrot, F. Tourinho, J.C. Bacri, E. Dubois, R. Perzynski, Y.L. Raikher, J. Magn. Magn. Mater. 242–245, 572 (2002)

    Article  Google Scholar 

  15. C. Ramankutty, S. Sugunan, Appl. Catal. A Gen. 218, 39 (2001)

    Article  Google Scholar 

  16. A. Gaffoor, D. Ravinder, Int. J. Eng. Res. Appl. 4(4), 73–79 (2014)

    Google Scholar 

  17. N.B. Velhal, N.D. Patil, A.R. Shelke, N.G. Deshpande, V.R. Puri, AIP Adv (2015). doi:10.1063/1.4931908

    Google Scholar 

  18. B.D. Cullity, Elements of X-ray diffraction (Addison-Wesley, Reading, 1978)

    Google Scholar 

  19. M.A. Salem, M.S. Salim, R.M.E. Okr, M. Ashoush, H.M. Talaat, M.M. El-Okr, J. Magn. Magn. Mater. 323, 920–926 (2011)

    Article  Google Scholar 

  20. S.S. Umare, R.S. Ningthoujam, S.J. Sharma, S. Shrivastava, S. Kurian, N.S. Gajbhiye, Hyperfine Interact. (2008). doi:10.1007/s10751-008-9796-4

    Google Scholar 

  21. H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edn. (Wiley, New York, 1974)

    Google Scholar 

  22. A.C.F. Costa, E. Tortella, M.R. Morelli, E.F. Neto, R.H.G.A. Kiminami, Mater. Res. 7, 523 (2004)

    Article  Google Scholar 

  23. S. Singhal, J. Singh, S.K. Barthwal, K. Chandra, J. Solid State Chem. 178, 3183–3189 (2005)

    Article  Google Scholar 

  24. P.P. Hankare, K.R. Sanadi, K.M. Garadkar, D.R. Patil, I.S. Mulla, J. Alloys Compd. 553, 383–388 (2013)

    Article  Google Scholar 

  25. M.A. Ati, H. Khudhair, S. Dabagh, R.M. Rosnan, A.A. Ati, Int. J. Sci. Eng. Res. 5(9), 927–930 (2014)

    Google Scholar 

  26. K. Maaz, W. Khalid, A. Mumtaz, S.K. Hasanain, J. Liu, J.L. Duan, Phys. E 41, 593–599 (2009)

    Article  Google Scholar 

  27. C. Singh, A. Goyal, S. Singhal, RSC. Nanoscale (2014). doi:10.1039/c4nr01730g

    Google Scholar 

  28. P. Sivagurunathan, S.R. Gibin, J. Mater. Sci. Mater. Electron. (2015). doi:10.1007/s10854-015-4065-1

    Google Scholar 

  29. P. Sivagurunathan, S.R. Gibin, J. Mater. Sci. Mater. Electron. (2016). doi:10.1007/s10854-016-4915-5

    Google Scholar 

  30. K. Sathishkumar, N. Shanmugam, N. Kannadasan, S. Cholan, G. Viruthagiri, J. Mater. Sci. Mater. Electron. (2015). doi:10.1007/s10854-014-2624-5

    Google Scholar 

  31. S.C. Pang, B.H. Wee, S.F. Chin, Int. J. Electro. Chem. (2011). doi:10.4061/2011/397685

    Google Scholar 

  32. S.-K. Chang, Z. Zainal, K.B. Tan, N.A. Yousaf, W.M. Daud, W. Yousaff, S.R.S. Prabaharan, Int. J. Energy Res. (2012). doi:10.1002/er.3339

    Google Scholar 

  33. Seema Joshi, Manoj Kumar, J. Supercond. Novel Mag. 29(6), 1561–1572 (2016)

    Article  Google Scholar 

  34. J.S. Corneille, J.-W. He, D.W. Goodman, Surf. Sci. 338, 211–224 (1995)

    Article  Google Scholar 

  35. Seema Joshi, V.B. Kamble, M. Kumar, A.M. Umarji, G. Srivastava, J. Alloys Compd. (2015). doi:10.1016/j.jallcom.2015.09.119

    Google Scholar 

  36. F. Tudorachea, P.D. Popab, M. Dobromira, F. Iacomia, Mater. Sci. Eng. B 178, 1334–1338 (2013)

    Article  Google Scholar 

  37. S. Joshi, M. Kumar, J. Supercond. Nov. Magn. (2015). doi:10.1007/s10948-016-442-1

    Google Scholar 

  38. B. Mojic, K.P. Giannakopoulosb, Z. Cvejic, V.V. Srdic, Ceram. Int. 38, 6635–6641 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sivagurunathan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gibin, S.R., Sivagurunathan, P. Synthesis and characterization of nickel cobalt ferrite (Ni1−xCoxFe2O4) nano particles by co-precipitation method with citrate as chelating agent. J Mater Sci: Mater Electron 28, 1985–1996 (2017). https://doi.org/10.1007/s10854-016-5755-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5755-z

Keywords

Navigation