Skip to main content
Log in

Structural, electrochemical, electronic, and magnetic properties of monoclinic LixV2(PO4)3 for x = 3, 2, 1 using first-principles calculations

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Monoclinic lithium vanadium phosphate Li3V2(PO4)3 is a very promising cathode candidate for applications in Li-ion batteries, with a high operational voltage (~ 4 V vs. Li+/Li) and a high theoretical capacity of 197 mAh/g. However, the underlying electrochemical mechanism of monoclinic Li3V2(PO4)3 is not yet fully understood, due to its complexity. To gain more knowledge about the electrochemical performance of the monoclinic Li3V2(PO4)3, we perform density functional calculations of structural, electrochemical, electronic, and magnetic properties of LixV2(PO4)3 for x = 3, 2, 1, based on the full-potential linearized augmented plane wave (FP-LAPW) method. The generalized gradient approximation corrected with the present work self-consistently calculated Hubbard parameter U (GGA+U method) shows that it can successfully reproduce the experimental average lithium intercalation voltage for the redox couple V4+/V3+ within 7% error, and within 2% error for the transition x: 3 ➔ 2. The present work method is fully ab initio and without any arbitrary parameters. In the literature, the existence of charge ordering in Li2V2(PO4)3 is subject to discrepancy. By analyzing the present calculated structural, magnetic, and electronic properties of Li2V2(PO4)3, the existence of charge ordering had been confirmed. The present work method sets the path for accurately predicting the redox potential of future lithium and sodium phosphate compounds for the next-generation batteries technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Tarascon J-M, Armand M (2010) Issues and challenges facing rechargeable lithium batteries. In: Materials for sustainable energy. Co-Published with Macmillan Publishers Ltd, UK, pp 171–179

    Chapter  Google Scholar 

  2. Guo Z, Zhu J, Feng J, Du S (2015) Direct in situ observation and explanation of lithium dendrite of commercial graphite electrodes. RSC Adv 5(85):69514–69521. https://doi.org/10.1039/C5RA13289D

    Article  CAS  Google Scholar 

  3. Yi T-F, Yang S-Y, Xie Y (2015) Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries. J Mater Chem A 3(11):5750–5777. https://doi.org/10.1039/C4TA06882C

    Article  CAS  Google Scholar 

  4. Exner KS (2018) A short perspective of modeling electrode materials in lithium-ion batteries by the ab initio atomistic thermodynamics approach. J Solid State Electrochem 22(10):3111–3117. https://doi.org/10.1007/s10008-018-4017-9

    Article  CAS  Google Scholar 

  5. Mao W, Tang H, Tang Z, Yan J, Xu Q (2013) Configuration of li-ion vanadium batteries: Li3V2(PO4)3(cathode)‖Li3V2(PO4)3(anode). ECS Electrochem Lett 2(7):A69–A71. https://doi.org/10.1149/2.008307eel

    Article  CAS  Google Scholar 

  6. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4302. https://doi.org/10.1021/cr020731c

    Article  CAS  PubMed  Google Scholar 

  7. Masquelier C, Croguennec L (2013) Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem Rev 113(8):6552–6591. https://doi.org/10.1021/cr3001862

    Article  CAS  PubMed  Google Scholar 

  8. Manthiram A, Knight JC, Myung S-T, Oh SM, Sun YK (2016) Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv Energy Mater 6(1):1501010. https://doi.org/10.1002/aenm.201501010

    Article  CAS  Google Scholar 

  9. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194. https://doi.org/10.1149/1.1837571

    Article  CAS  Google Scholar 

  10. Yuan L-X, Wang Z-H, Zhang W-X, Hu XL, Chen JT, Huang YH, Goodenough JB (2011) Development and challenges of LiFePO 4 cathode material for lithium-ion batteries. Energy Environ Sci 4(2):269–284. https://doi.org/10.1039/C0EE00029A

    Article  CAS  Google Scholar 

  11. Saıdi MY, Barker J, Huang H et al (2002) Electrochemical properties of lithium vanadium phosphate as a cathode material for lithium-ion batteries. Electrochem Solid-State Lett 5:A149–A151. https://doi.org/10.1149/1.1479295

    Article  CAS  Google Scholar 

  12. Hörmann NG, Groß A (2014) Stability, composition and properties of Li2FeSiO4 surfaces studied by DFT. J Solid State Electrochem 18(5):1401–1413. https://doi.org/10.1007/s10008-013-2189-x

    Article  CAS  Google Scholar 

  13. Jiang F, Di Y, Liu E et al (2020) First-principles investigation of the structural stability and electronic properties of LiV1–xMxPO4F (M = Mn, Fe, Co, and Ni). J Solid State Electrochem 24(4):1075–1084. https://doi.org/10.1007/s10008-020-04582-6

    Article  CAS  Google Scholar 

  14. Yu S, Hu JQ, Hussain MB, Wu SQ, Yang Y, Zhu ZZ (2018) Structural stabilities and electrochemistry of Na2FeSiO4 polymorphs: first-principles calculations. J Solid State Electrochem 22(7):2237–2245. https://doi.org/10.1007/s10008-018-3931-1

    Article  CAS  Google Scholar 

  15. Nayak D, Sarkar T, Chaudhary NVP, Bharadwaj MD, Ghosh S, Adyam V (2018) Electrochemical properties and first-principle analysisof Nax[MyMn1−y]O2 (M = Fe, Ni) cathode. J Solid State Electrochem 22(4):1079–1089. https://doi.org/10.1007/s10008-017-3850-6

    Article  CAS  Google Scholar 

  16. Yu S, Zhang P, Wu SQ, Li AY, Zhu ZZ, Yang Y (2014) Understanding the structural and electronic properties of the cathode material NaFeF3 in a Na-ion battery. J Solid State Electrochem 18(8):2071–2075. https://doi.org/10.1007/s10008-014-2454-7

    Article  CAS  Google Scholar 

  17. Shasha H, Yatom N, Prill M, Zaffran J, Biswas S, Aurbach D, Toroker MC, Ein-Eli Y (2019) Unveiling ionic diffusion in MgNiMnO4 cathode material for Mg-ion batteries via combined computational and experimental studies. J Solid State Electrochem 23(11):3209–3216. https://doi.org/10.1007/s10008-019-04401-7

    Article  CAS  Google Scholar 

  18. Lee W, Muhammad S, Sergey C, Lee H, Yoon J, Kang YM, Yoon WS (2020) Advances in the cathode materials for lithium rechargeable batteries. Angew Chem Int Ed 59(7):2578–2605. https://doi.org/10.1002/anie.201902359

    Article  CAS  Google Scholar 

  19. Wu F, Yushin G (2017) Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ Sci 10(2):435–459. https://doi.org/10.1039/C6EE02326F

    Article  CAS  Google Scholar 

  20. Kraytsberg A, Ein-Eli Y (2017) A critical review-promises and barriers of conversion electrodes for Li-ion batteries. J Solid State Electrochem 21(7):1907–1923. https://doi.org/10.1007/s10008-017-3580-9

    Article  CAS  Google Scholar 

  21. Yin S-C, Grondey H, Strobel P, Anne M, Nazar LF (2003) Electrochemical property: structure relationships in monoclinic Li3-y V2 (PO4) 3. J Am Chem Soc 125(34):10402–10411. https://doi.org/10.1021/ja034565h

    Article  CAS  PubMed  Google Scholar 

  22. Tao D, Wang S, Liu Y, Dai Y, Yu J, Lei X (2015) Lithium vanadium phosphate as cathode material for lithium ion batteries. Ionics 21(5):1201–1239. https://doi.org/10.1007/s11581-015-1405-3

    Article  CAS  Google Scholar 

  23. Liu R, Liang Z, Gong Z, Yang Y (2019) Research progress in multielectron reactions in polyanionic materials for sodium-ion batteries. Small Methods 3(4):1800221. https://doi.org/10.1002/smtd.201800221

    Article  CAS  Google Scholar 

  24. Morgan D, Ceder G, Saidi MY et al (2002) Experimental and computational study of the structure and electrochemical properties of Li x M2 (PO4) 3 compounds with the monoclinic and rhombohedral structure. Chem Mater 14(11):4684–4693. https://doi.org/10.1021/cm020348o

    Article  CAS  Google Scholar 

  25. Huang H, Yin S-C, Kerr T, Taylor N, Nazar LF (2002) Nanostructured composites: a high capacity, fast rate Li3V2(PO4)3/carbon cathode for rechargeable lithium batteries. Adv Mater 14(21):1525–1528. https://doi.org/10.1002/1521-4095(20021104)14:21<1525::AID-ADMA1525>3.0.CO;2-3

    Article  CAS  Google Scholar 

  26. Lin X, Shen Z, Han T, Liu J, Huang J, Zhou P, Zhang H, Liu J, Li J, Li J (2018) Hydrogel assisted synthesis of Li3V2(PO4)3 composite as high energy density and low-temperature stable secondary battery cathode. J Alloys Compd 739:837–847. https://doi.org/10.1016/j.jallcom.2017.12.348

    Article  CAS  Google Scholar 

  27. Park J-S, Kim J, Park WB, Sun YK, Myung ST (2017) Effect of Mn in Li3V2–xMnx(PO4)3 as high capacity cathodes for lithium batteries. ACS Appl Mater Interfaces 9(46):40307–40316. https://doi.org/10.1021/acsami.7b13128

    Article  CAS  PubMed  Google Scholar 

  28. Yin S-C, Strobel PS, Grondey H, Nazar LF (2004) Li2.5V2(PO4)3: a room-temperature analogue to the fast-ion conducting high-temperature γ-phase of Li3V2(PO4)3. Chem Mater 16(8):1456–1465. https://doi.org/10.1021/cm034802f

    Article  CAS  Google Scholar 

  29. Ou Q-Z, Tang Y, Zhong Y-J, Guo XD, Zhong BH, Heng-Liu, Chen MZ (2014) Submicrometer porous Li3V2(PO4)3/C composites with high rate electrochemical performance prepared by sol-gel combustion method. Electrochim Acta 137:489–496. https://doi.org/10.1016/j.electacta.2014.04.178

    Article  CAS  Google Scholar 

  30. Kim S, Zhang Z, Wang S, Yang L, Cairns EJ, Penner-Hahn JE, Deb A (2016) Electrochemical and structural investigation of the mechanism of irreversibility in Li3V2(PO4)3 cathodes. J Phys Chem C 120(13):7005–7012. https://doi.org/10.1021/acs.jpcc.6b00408

    Article  CAS  Google Scholar 

  31. Patoux S, Wurm C, Morcrette M, Rousse G, Masquelier C (2003) A comparative structural and electrochemical study of monoclinic Li3Fe2 (PO4) 3 and Li3V2 (PO4) 3. J Power Sources 119:278–284. https://doi.org/10.1016/S0378-7753(03)00150-2

    Article  CAS  Google Scholar 

  32. Cahill LS, Chapman RP, Britten JF, Goward GR (2006) 7Li NMR and two-dimensional exchange study of lithium dynamics in monoclinic Li3V2(PO4)3. J Phys Chem B 110(14):7171–7177. https://doi.org/10.1021/jp057015+

    Article  CAS  PubMed  Google Scholar 

  33. Lee S, Park SS (2012) Atomistic simulation study of monoclinic Li3V2(PO4)3 as a cathode material for Lithium ion battery: structure, defect chemistry, lithium ion transport pathway, and dynamics. J Phys Chem C 116(48):25190–25197. https://doi.org/10.1021/jp306105g

    Article  CAS  Google Scholar 

  34. Lin Z-P, Zhao Y-J, Zhao Y-M (2013) The structure, magnetism and conductivity of Li 3 V 2 (PO 4) 3: a theoretical and experimental study. Mod Phys Lett B 27(27):1350199. https://doi.org/10.1142/S0217984913501996

    Article  CAS  Google Scholar 

  35. Ong SP, Chevrier VL, Hautier G, Jain A, Moore C, Kim S, Ma X, Ceder G (2011) Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci 4(9):3680–3688. https://doi.org/10.1039/C1EE01782A

    Article  CAS  Google Scholar 

  36. Castets A, Carlier D, Trad K, Delmas C, Ménétrier M (2010) Analysis of the 7Li NMR signals in the monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3 phases. J Phys Chem C 114(44):19141–19150. https://doi.org/10.1021/jp106871z

    Article  CAS  Google Scholar 

  37. You X, Xiao S, Zhang T, Zeng D, Xiao Q, Li Z, Lei G (2015) Effects of chelating agents on electrochemical properties of Li3V2(PO4)3/C cathode materials. Mater Technol 30(sup2):A64–A69. https://doi.org/10.1179/17535557A15Y.000000012

    Article  CAS  Google Scholar 

  38. Onoda M, Hirose H (2012) Crystal structures and 3d electron configurations for the Li x V2 (PO4) 3 insertion electrode system with a semi-double-electron reaction. J Phys Soc Jpn 81(9):094801. https://doi.org/10.1143/JPSJ.81.094801

    Article  CAS  Google Scholar 

  39. Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44(3):943–954. https://doi.org/10.1103/PhysRevB.44.943

    Article  CAS  Google Scholar 

  40. Zhou F, Cococcioni M, Marianetti CA, Morgan D, Ceder G (2004) First-principles prediction of redox potentials in transition-metal compounds with LDA+ U. Phys Rev B 70(23):235121. https://doi.org/10.1103/PhysRevB.70.235121

    Article  CAS  Google Scholar 

  41. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J, Laskowski R, Tran F and Marks LD, WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties (Karlheinz Schwarz, Techn. Universität Wien, Austria), 2018. ISBN 3-9501031-1-2

  42. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  43. Madsen GKH, Novák P (2005) Charge order in magnetite. An LDA+ U study. EPL. Europhys Lett 69(5):777–783. https://doi.org/10.1209/epl/i2004-10416-x

    Article  CAS  Google Scholar 

  44. Anisimov VI, Gunnarsson O (1991) Density-functional calculation of effective Coulomb interactions in metals. Phys Rev B 43(10):7570–7574. https://doi.org/10.1103/PhysRevB.43.7570

    Article  CAS  Google Scholar 

  45. Mouhib Y, Belaiche M, Ferdi CA, Lacham M, Elacham A (2020) New technique for elaboration and characterization of a high voltage spinel LiCo2O4 cathode and theoretical investigation. New J Chem 44(6):2538–2546. https://doi.org/10.1039/C9NJ06126F

    Article  CAS  Google Scholar 

  46. Zhang L-L, Liang G, Peng G, Zou F, Huang YH, Croft MC, Ignatov A (2012) Significantly improved electrochemical performance in Li3V2 (PO4) 3/C promoted by SiO2 coating for lithium-ion batteries. J Phys Chem C 116(23):12401–12408. https://doi.org/10.1021/jp301127r

    Article  CAS  Google Scholar 

  47. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276. https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  48. Aydinol MK, Kohan AF, Ceder G, Cho K, Joannopoulos J (1997) Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B 56(3):1354–1365. https://doi.org/10.1103/PhysRevB.56.1354

    Article  CAS  Google Scholar 

  49. Reuter K, Scheffler M (2001) Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys Rev B 65(3):035406. https://doi.org/10.1103/PhysRevB.65.035406

    Article  CAS  Google Scholar 

  50. Exner KS (2017) Constrained Ab initio thermodynamics: transferring the concept of surface Pourbaix diagrams in electrocatalysis to electrode materials in Lithium-ion batteries. ChemElectroChem 4(12):3231–3237. https://doi.org/10.1002/celc.201700754

    Article  CAS  Google Scholar 

  51. Bykov AB, Chirkin AP, Demyanets LN et al (1990) Superionic conductors Li3M2 (PO4) 3 (M=Fe, Sc, Cr): synthesis, structure and electrophysical properties. Solid State Ionics 38(1-2):31–52. https://doi.org/10.1016/0167-2738(90)90442-T

    Article  CAS  Google Scholar 

  52. Cahill LS, Chapman RP, Kirby CW, Goward GR (2007) The challenge of paramagnetism in two-dimensional 6, 7 Li exchange NMR. Appl Magn Reson 32(4):565–581. https://doi.org/10.1007/s00723-007-0046-8

    Article  CAS  Google Scholar 

  53. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(5):751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  54. Wang L, Maxisch T, Ceder G (2006) Oxidation energies of transition metal oxides within the GGA+U framework. Phys Rev B 73(19):195107. https://doi.org/10.1103/PhysRevB.73.195107

    Article  CAS  Google Scholar 

  55. Kubaschewski O, Alcock CB, Spencer PJ (1993) Materials thermochemistry. Pergamon Press

Download references

Author information

Authors and Affiliations

Authors

Contributions

Prof. Belaiche Mohammed: conceptualization, investigation, supervision, validation, resources, writing—review and editing. AHMANI FERDI Chouaib: investigation, software, visualization, writing—original draft, methodology. Iffer Elabadila: software, visualization.

Corresponding author

Correspondence to Mohammed Belaiche.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Code availability

First-principles calculations were performed by using the Wien2k package [41] which can be ordered by filling out the registration form below: http://susi.theochem.tuwien.ac.at/order/wien2k_reg_form_new.html.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmani Ferdi, C., Belaiche, M. & Iffer, E. Structural, electrochemical, electronic, and magnetic properties of monoclinic LixV2(PO4)3 for x = 3, 2, 1 using first-principles calculations. J Solid State Electrochem 25, 301–313 (2021). https://doi.org/10.1007/s10008-020-04808-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04808-7

Keywords

Navigation