Skip to main content
Log in

Structure and properties of low-Ag SAC solders for electronic packaging

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Since the high cost of Ag, current research on traditional high-Ag solders has gradually shifted to low-Ag solders. However, the microstructure tends to be coarser, and the all-around performance declines as the Ag content decreases. Fortunately, doping alloying elements or nanoparticles has proven efficient in enhancing low-Ag solders' properties. Furthermore, choosing a suitable surface treatment technique or employing magnet stirring for the molten solders also makes a significant difference. To further promote research regarding low-Ag solders, this paper mainly reviews the effects of alloying and particle reinforcement on melting characteristics, wettability, microstructure, interfacial reaction, mechanical properties, creep resistance, reliability and corrosion resistance, and the progress of modified low-Ag solders have also been systematically summarized and analyzed. Finally, the challenges and research gaps for low-Ag solders have been provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Data availability

The datasets supporting the conclusions of this article are included within the article.

References

  1. X.W. Hu, Y.L. Li, Z.X. Min, Interfacial reaction and IMC growth between Bi-containing Sn0.7Cu solders and Cu substrate during soldering and aging. J. Alloys Compd. 582, 341–347 (2014)

    Article  CAS  Google Scholar 

  2. M. Zhao, L. Zhang, Z.Q. Liu, M.Y. Xiong, L. Sun, Structure and properties of Sn-Cu lead-free solders in electronics packaging. Sci. Technol. Adv. Mater. 20, 421–444 (2019)

    Article  CAS  Google Scholar 

  3. J.L. Qiu, Y.Z. Peng, P. Gao, C.J. Li, Effect of Cu content on performance of Sn–Zn–Cu lead-free solder alloys designed by cluster-plus-glue-atom model. Materials 14, 13 (2021)

    Article  Google Scholar 

  4. D. Manasijevic, L. Balanovic, I. Markovic, M. Gorgievski, U. Stamenkovic, K. Bozinovic, Microstructure, melting behavior and thermal conductivity of the Sn–Zn alloys. Thermochim. Acta 702, 9 (2021)

    Article  Google Scholar 

  5. H.J. Kang, S.H. Rajendran, J.P. Jung, Low melting temperature Sn–Bi solder: effect of alloying and nanoparticle addition on the microstructural, thermal, interfacial bonding, and mechanical characteristics. Metals 11, 25 (2021)

    Article  Google Scholar 

  6. C.Y. Cai, J.F. Xu, H.Y. Wang, S.B. Park, A comparative study of thermal fatigue life of Eutectic Sn–Bi, Hybrid Sn–Bi/SAC and SAC solder alloy BGAs. Microelectron. Reliab. 119, 8 (2021)

    Article  Google Scholar 

  7. X.W. Hu, T. Xu, L.M. Keer, Y.L. Li, X.X. Jiang, Microstructure evolution and shear fracture behavior of aged Sn3Ag0.5Cu/Cu solder joints. Mater. Sci. Eng. A 673, 167–177 (2016)

    Article  CAS  Google Scholar 

  8. X.W. Hu, T. Xu, L.M. Keer, Y.L. Li, X.X. Jiang, Shear strength and fracture behavior of reflowed Sn3.0Ag0.5Cu/Cu solder joints under various strain rates. J. Alloys Compd. 690, 720–729 (2017)

    Article  CAS  Google Scholar 

  9. X. Wang, L. Zhang, M.L. Li, Microstructure and properties of Sn–Ag and Sn–Sb lead-free solders in electronics packaging: a review. J. Mater. Sci. Mater. Electron. 33, 2259–2292 (2022)

    Article  Google Scholar 

  10. S. Li, X.X. Wang, Z.Y. Liu, F. Mao, Y.T. Jiu, J.Y. Luo et al., Research status of evolution of microstructure and properties of Sn-based lead-free composite solder alloys. J. Nanomater. 2020, 25 (2020)

    Article  Google Scholar 

  11. H.R. Kotadia, P.D. Howes, S.H. Mannan, A review: on the development of low melting temperature Pb-free solders. Microelectron. Reliab. 54, 1253–1273 (2014)

    Article  CAS  Google Scholar 

  12. J.J. Yu, C.A. Yang, Y.F. Lin, C.H. Hsueh, C.R. Kao, Optimal Ag addition for the elimination of voids in Ni/SnAg/Ni micro joints for 3D IC applications. J. Alloys Compd. 629, 16–21 (2015)

    Article  CAS  Google Scholar 

  13. T.K. Lee, W.D. Xie, M. Tsai, M.D. Sheikh, Impact of microstructure evolution on the long-term reliability of wafer-level chip-scale package Sn–Ag–Cu solder interconnects. IEEE Trans. Compon. Packag. Manuf. Technol. 10, 1594–1603 (2020)

    Article  CAS  Google Scholar 

  14. C.J. Lee, W.Y. Chen, T.T. Chou, T.K. Lee, Y.C. Wu, T.C. Chang et al., The investigation of interfacial and crystallographic observation in the Ni(V)/SAC/OSP Cu solder joints with high and low silver content during thermal cycling test. J. Mater. Sci. Mater. Electron. 26, 10055–10061 (2015)

    Article  CAS  Google Scholar 

  15. S. Jeong, J.W. Jang, S. Yoo, J. Park, S. Cho, J. Han et al., Metallurgical behaviors of lead-free solder alloys with respect to Ag content in a ball grid array package around melting temperatures. J. Mater. Sci. Mater. Electron. 28, 17038–17043 (2017)

    Article  CAS  Google Scholar 

  16. S. Hamasha, P. Borgesen, Effects of strain rate and amplitude variations on solder joint fatigue life in isothermal cycling. J. Electron. Packag. 138, 9 (2016)

    Article  Google Scholar 

  17. L. Zhang, L. Sun, Y. Guo, H. Jiang, L.J. Bao, S.U. Jo, Fatigue life prediction of low-silver Sn1.0Ag0.5Cu solder joints. J. Southest University (Natural Science Edition). 45, 668–672 (2015)

  18. K. Maslinda, A.S. Anasyida, M.S. Nurulakmal, Effect of Al addition to bulk microstructure, IMC formation, wetting and mechanical properties of low-Ag SAC solder. J. Mater. Sci. Mater. Electron. 27, 489–502 (2016)

    Article  CAS  Google Scholar 

  19. K. Kanlayasiri, K. Sukpimai, Effects of indium on the intermetallic layer between low-Ag SAC0307–xIn lead-free solders and Cu substrate. J. Alloys Compd. 668, 169–175 (2016)

    Article  CAS  Google Scholar 

  20. L. Zhang, K.N. Tu, L. Sun, Y. Guo, C. He, Wettability of Sn–0.3Ag–0.7Cu–xSb lead-free solders. Trans. China Weld. Inst. 36, 59–62 (2015)

    Google Scholar 

  21. J. Wu, S.B. Xue, J.W. Wang, J.X. Wang, S. Liu, Effect of Pr addition on properties and Sn whisker growth of Sn-0.3Ag-0.7Cu low-Ag solder for electronic packaging. J. Mater. Sci. Mater. Electron. 28, 10230–10244 (2017)

    Article  CAS  Google Scholar 

  22. B. Wang, S.B. Xue, J.X. Wang, W.M. Long, Q.K. Zhang, Effect of rare earth Pr on creep behavior of Sn–0.3Ag–0.7Cu–0.5Ga low-Ag solder alloys. Rare Met. Mater. Eng. 47, 2657–2662 (2018)

    Article  CAS  Google Scholar 

  23. H. Wang, S.B. Xue, J.X. Wang, Study on the microstructure and properties of low-Ag Sn–0.3Ag–0.7Cu–0.5Ga solder alloys bearing Pr. J. Mater. Sci. Mater. Electron. 28, 8246–8254 (2017)

    Article  CAS  Google Scholar 

  24. J.C. Xu, S.B. Xue, P. Xue, W.M. Long, Q.K. Zhang, Study on microstructure and properties of Sn–0.3Ag–0.7Cu solder bearing Nd. J. Mater. Sci. Mater. Electron. 27, 8771–8777 (2016)

    Article  CAS  Google Scholar 

  25. L.M. Yin, Z.W. Zhang, Z.L. Su, H.H. Zhang, C.G. Zuo, Z.X. Yao et al., Interfacial microstructure evolution and properties of Sn–0.3Ag–0.7Cu–xSiC solder joints. Mater. Sci. Eng. A 809, 7 (2021)

    Article  Google Scholar 

  26. Y. Tang, S.M. Luo, G.Y. Li, Z. Yang, C.J. Hou, Effects of Mn nanoparticle addition on wettability, microstructure and microhardness of low-Ag Sn–0.3Ag–0.7Cu–xMn(np) composite solders. Solder. Surf. Mt Technol. 30, 153–163 (2018)

    Article  Google Scholar 

  27. Y. Tang, S.M. Luo, G.Y. Li, Z. Yang, R. Chen, Y. Han et al., Effect of Mn nanoparticles on interfacial intermetallic compound growth in low-Ag Sn–0.3Ag–0.7Cu–xMn solder joints. J. Electron. Mater. 47, 1673–1685 (2018)

    Article  CAS  Google Scholar 

  28. Z.H. Li, Y. Tang, Q.W. Guo, G.Y. Li, A diffusion model and growth kinetics of interfacial intermetallic compounds in Sn–0.3Ag–0.7Cu and Sn–0.3Ag–0.7Cu–0.5CeO(2) solder joints. J. Alloys Compd. 818, 13 (2020)

    Article  Google Scholar 

  29. J. Wu, S.B. Xue, J.W. Wang, M.F. Wu, J.H. Wang, Effects of alpha-Al2O3 nanoparticles-doped on microstructure and properties of Sn–0.3Ag–0.7Cu low-Ag solder. J. Mater. Sci. Mater. Electron. 29, 7372–7387 (2018)

    Article  CAS  Google Scholar 

  30. J. Wu, S.B. Xue, J.W. Wang, J.X. Wang, Y.B. Deng, Enhancement on the high-temperature joint reliability and corrosion resistance of Sn–0.3Ag–0.7Cu low-Ag solder contributed by Al2O3 nanoparticles (0.12 wt%). J. Mater. Sci. Mater. Electron. 29, 19663–19677 (2018)

    Article  Google Scholar 

  31. S. Tikale, K.N. Prabhu, Development of low-silver content SAC0307 solder alloy with Al2O3 nanoparticles. Mater. Sci. Eng. A 787, 17 (2020)

    Article  Google Scholar 

  32. J. Wu, S.B. Xue, J.W. Wang, P. Xue, Effect of thermal cycling on interfacial microstructure and mechanical properties of Sn–0.3Ag–0.7Cu–(–Al2O3) nanoparticles/Cu low-Ag solder joints. J. Electron. Mater. 48, 4562–4572 (2019)

    Article  CAS  Google Scholar 

  33. J. Wu, S.B. Xue, J.W. Wang, M.F. Wu, Coupling effects of rare-earth Pr and Al2O3 nanoparticles on the microstructure and properties of Sn–0.3Ag–0.7Cu low-Ag solder. J. Alloys Compd. 784, 471–487 (2019)

    Article  CAS  Google Scholar 

  34. Z.X. Min, Y. Qiu, X.W. Hu, H.Z. Wang, Effect of Cu6Sn5 nanoparticles size on the properties of Sn0.3Ag0.7Cu nano-composite solders and joints. J. Mater. Sci. Mater. Electron. 30, 14726–14735 (2019)

    Article  CAS  Google Scholar 

  35. A. Skwarek, O. Krammer, T. Hurtony, P. Ptak, K. Gorecki, S. Wronski et al., Application of ZnO nanoparticles in Sn99Ag0.3Cu0.7-based composite solder alloys. Nanomaterials 11, 14 (2021)

    Article  Google Scholar 

  36. L.M. Yin, Z.W. Zhang, Z.L. Su, C.G. Zuo, Z.X. Yao, G. Wang et al., Effects of graphene nanosheets on the wettability and mechanical properties of Sn–0.3Ag–0.7Cu lead-free solder. J. Electron. Mater. 49, 7394–7399 (2020)

    Article  Google Scholar 

  37. A.E. Hammad, Investigation of microstructure and mechanical properties of novel Sn–0.5Ag–0.7Cu solders containing small amount of Ni. Mater. Des. 50, 108–116 (2013)

    Article  CAS  Google Scholar 

  38. D.X. Luo, S.B. Xue, S. Liu, Investigation on the intermetallic compound layer growth of Sn–0.5Ag–0.7Cu–xGa/Cu solder joints during isothermal aging. J. Mater. Sci. Mater. Electron. 25, 5195–5200 (2014)

    Article  CAS  Google Scholar 

  39. J.C. Xu, S.B. Xue, D.X. Luo, H. Wang, P. Xue, Effect of Ga on the inoxidizability and wettability of Sn–0.5Ag–0.7Cu–0.05Pr solder. Adv. Mater. Sci. Eng. 2017, 7 (2017)

    Google Scholar 

  40. M. Celikin, M. Maalekian, M. Pekguleryuz, Effect of Bi additions on the creep behaviour of SAC solder alloys. J. Electron. Mater. 47, 5842–5849 (2018)

    Article  CAS  Google Scholar 

  41. X.X. Kong, J.J. Zhai, F.L. Sun, Y. Liu, H. Zhang, Combined effect of Bi and Ni elements on the mechanical properties of low-Ag Cu/Sn–0.7Ag–0.5Cu/Cu solder joints. Microelectron. Reliab. 107, 7 (2020)

    Article  Google Scholar 

  42. L. Yang, F. Sun, L. Yang, X. Li, Effect of Ni, Bi concentration on the microstructure and shear behavior of low-Ag SAC–Bi–Ni/Cu solder joints. J. Mater. Sci. Mater. Electron. 25, 2627–2633 (2014)

    Article  Google Scholar 

  43. Y. Liu, F.L. Sun, H.W. Zhang, P.F. Zou, Solderability, IMC evolution, and shear behavior of low-Ag Sn0.7Ag0.5Cu–BiNi/Cu solder joint. J. Mater. Sci. Mater. Electron. 23, 1705–1710 (2012)

    Article  CAS  Google Scholar 

  44. G.Q. Wei, L. Wang, X.Q. Peng, M.Y. Xue, Interfacial intermetallic compound growth and shear strength of low-silver SnAgCuBiNi/Cu lead-free solder joints. Int. J. Miner. Metall. Mater. 20, 883–889 (2013)

    Article  CAS  Google Scholar 

  45. N. Hamada, T. Uesugi, Y. Takigawa, K. Higashi, Effects of Zn addition and aging treatment on tensile properties of Sn–Ag–Cu alloys. J. Alloys Compd. 527, 226–232 (2012)

    Article  CAS  Google Scholar 

  46. A.A. El-Daly, A.E. Hammad, G.S. Al-Ganainy, M. Ragab, Influence of Zn addition on the microstructure, melt properties and creep behavior of low Ag-content Sn–Ag–Cu lead-free solders. Mater. Sci. Eng. A 608, 130–138 (2014)

    Article  CAS  Google Scholar 

  47. D.A. Shnawah, M.F.M. Sabri, I.A. Badruddin, S.B.M. Said, T. Ariga, F.X. Che, Effect of Ag content and the minor alloying element Fe on the mechanical properties and microstructural stability of Sn–Ag–Cu solder alloy under high-temperature annealing. J. Electron. Mater. 42, 470–484 (2013)

    Article  CAS  Google Scholar 

  48. Y. Chen, Z.C. Meng, L.Y. Gao, Z.Q. Liu, Effect of Bi addition on the shear strength and failure mechanism of low-Ag lead-free solder joints. J. Mater. Sci. Mater. Electron. 32, 1–15 (2021)

    Google Scholar 

  49. M.H. Mandavifard, M.F.M. Sabri, D.A. Shnawah, S.M. Said, I.A. Badruddin, S. Rozali, The effect of iron and bismuth addition on the microstructural, mechanical, and thermal properties of Sn–1Ag–0.5Cu solder alloy. Microelectron. Reliab. 55, 1886–1890 (2015)

    Article  Google Scholar 

  50. Y.M. Leong, A. Haseeb, H. Nishikawa, O. Mokhtari, Microstructure and mechanical properties of Sn–1.0Ag–0.5Cu solder with minor Zn additions. J. Mater. Sci. Mater. Electron. 30, 11914–11922 (2019)

    Article  CAS  Google Scholar 

  51. Y.M. Leong, A. Haseeb, Soldering characteristics and mechanical properties of Sn–1.0Ag–0.5Cu solder with minor aluminum addition. Materials 9, 17 (2016)

    Article  Google Scholar 

  52. D.A.A. Shnawah, M.F.M. Sabri, I.A. Badruddin, S.B.M. Said, F.X. Che, The bulk alloy microstructure and mechanical properties of Sn–1Ag–0.5Cu–xAl solders (x = 0, 0.1 and 0.2 wt%). J. Mater. Sci. Mater. Electron. 23, 1988–1997 (2012)

    Article  CAS  Google Scholar 

  53. H. Bian, W. Fu, Y.Z. Lei, X.G. Song, D. Liu, J. Cao et al., Wetting and low temperature bonding of zirconia metallized with Sn0.3Ag0.7Cu–Ti alloys. Ceram. Int. 44, 11456–11465 (2018)

    Article  CAS  Google Scholar 

  54. H. Kanayama, Y. Konishi, F. Ogawa, T. Itoh, M. Sakane, M. Yamashita et al., Effect of additional elements on the low-cycle-fatigue characteristics of Sn–1.0Ag–0.7Cu solder obtained using a miniature-sized specimen. Int. J. Fatigue 116, 180–191 (2018)

    Article  CAS  Google Scholar 

  55. F. Ogawa, H. Nagao, T. Itoh, M. Sakane, M. Yamashita, H. Hokazono et al., Creep characteristic of Sn1.0Ag0.7Cu lead-free solders with element addition. Appl. Mech. 853, 192–196 (2017)

    Google Scholar 

  56. S. Lei, Z. Liang, X. Le, S.J. Zhong, M. Jia, B. Li, Effect of nano-Al addition on properties and microstructure of low-Ag content Sn–1Ag–0.5Cu solders. J. Mater. Sci. Mater. Electron. 27, 7665–7673 (2016)

    Article  Google Scholar 

  57. L. Sun, M.H. Chen, C.C. Wei, L. Zhang, F. Yang, Effect of thermal cycles on interface and mechanical property of low-Ag Sn1.0Ag0.5Cu(nano-Al)/Cu solder joints. J. Mater. Sci. Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-9014-3

    Article  Google Scholar 

  58. X.C. Zhao, Y.N. Wen, Y. Li, Y. Liu, Y. Wang, Effect of gamma-Fe2O3 nanoparticles size on the properties of Sn–1.0Ag0.5Cu nano-composite solders and joints. J. Alloys Compd. 662, 272–282 (2016)

    Article  CAS  Google Scholar 

  59. A. Sharma, H. Yu, I.S. Cho, H. Seo, B. Ahn, ZrO2 nanoparticle embedded low silver lead free solder alloy for modern electronic devices. Electron. Mater. Lett. 15, 27–35 (2019)

    Article  CAS  Google Scholar 

  60. C. Ping, X. Zhao, W. Yong, Z. Bing, C. Liu, S. Chen, Effect of nano-FeO additions on physical and mechanical properties of Sn–1.0Ag–0.7Cu–xFeO low Ag lead-free solders. J. Mater. Sci. Mater. Electron. 27, 1507–1519 (2016)

    Article  Google Scholar 

  61. K. Vidyatharran, M.A.A. Hanim, T.T. Dele-Afolabi, K.A. Matori, O.S. Azlina, Microstructural and shear strength properties of GNSs-reinforced Sn–1.0Ag–0.5Cu (SAC105) composite solder interconnects on plain Cu and ENIAg surface finish. J. Mater. Res. Technol. 15, 2497–2506 (2021)

    Article  CAS  Google Scholar 

  62. R. Mayappan, A. Salleh, N.A. Tokiran, N.A. Awang, Activation energy for Cu–Sn intermetallic in CNT-reinforced Sn–1.0Ag–0.5Cu solder. Solder. Surf. Mt Technol. 32, 65–72 (2020)

    Article  Google Scholar 

  63. L. Zhang, K.N. Tu, L. Sun, Y. Guo, C. He, Reviews on latest advances in micro/nano-sized particles enhanced composite solders. Zhongnan Daxue Xuebao/J. Cent. South. Univ. 46, 49–65 (2015)

    CAS  Google Scholar 

  64. O. Mokhtari, A review: formation of voids in solder joint during the transient liquid phase bonding process—causes and solutions. Microelectron. Reliab. 98, 95–105 (2019)

    Article  CAS  Google Scholar 

  65. G. Henshall, R. Healey, R.S. Pandher, K. Sweatman, F. Hua, iNEMI Pb-Free Alloy Alternatives Project Report: State of the Industry (2010)

  66. A.A. El-Daly, A.M. El-Taher, Evolution of thermal property and creep resistance of Ni and Zn-doped Sn–2.0Ag–0.5Cu lead-free solders. Mater. Des. 51, 789–796 (2013)

    Article  CAS  Google Scholar 

  67. A.A. El-Daly, G.S. Al-Ganainy, A. Fawzy, M.J. Younis, Structural characterization and creep resistance of nano-silicon carbide reinforced Sn–1.0Ag–0.5Cu lead-free solder alloy. Mater. Des. 55, 837–845 (2014)

    Article  CAS  Google Scholar 

  68. A.M. El-Taher, S.E. Abd El Azeem, A.A. Ibrahiem, Novel low Ag-content Sn–Ag–Cu–Sb–Al solder alloys with enhanced elastic compliance and plastic energy dissipation ability by applying rotating magnetic field. J. Mater. Sci. Mater. Electron. 32, 6199–6213 (2021)

    Article  CAS  Google Scholar 

  69. S. Liu, S.B. Xue, P. Xue, D.X. Luo, Present status of Sn–Zn lead-free solders bearing alloying elements. J. Mater. Sci. Mater. Electron. 26, 4389–4411 (2015)

    Article  CAS  Google Scholar 

  70. J.W. Shi, Y.Z. Song, Lead-free wave soldering quality analyzing in nitrogen. Electron. Process Technol. 32(3), 185–187 (2011)

  71. Y. Gu, X. Zhao, Y. Li, Y. Liu, Y. Wang, Z. Li, Effect of nano-Fe2O3 additions on wettability and interfacial intermetallic growth of low-Ag content Sn–Ag–Cu solders on Cu substrates. J. Alloys Compd. 627, 39–47 (2015)

    Article  CAS  Google Scholar 

  72. F.J. Cheng, F. Gao, J.Y. Zhang, W.S. Jin, X. Xiao, Tensile properties and wettability of SAC0307 and SAC105 low Ag lead-free solder alloys. J. Mater. Sci. 46, 3424–3429 (2011)

    Article  CAS  Google Scholar 

  73. G. Zeng, M.D. Callaghan, S.D. McDonald, H. Yasuda, K. Nogita, In situ studies revealing dendrite and eutectic growth during the solidification of Sn–0.7Cu–0.5Ag Pb-free solder alloy. J. Alloys Compd. 797, 804–810 (2019)

    Article  CAS  Google Scholar 

  74. H. Shang, Z.L. Ma, S.A. Belyakov, C.M. Gourlay, Grain refinement of electronic solders: the potential of combining solute with nucleant particles. J. Alloys Compd. 715, 471–485 (2017)

    Article  CAS  Google Scholar 

  75. J.X. Wang, H. Su, D.K. Mu, X.D. Kong, Y.M. Jin, X.X. Shi, Growth behavior of IMCs in Sn–1.0Ag–0.5Cu–xBi/Ni joints during isothermal aging. J. Mater. Sci. Mater. Electron. 32, 20777–20792 (2021)

    Article  CAS  Google Scholar 

  76. S.H. Kim, J. Yu, Fe addition to Sn–3.5Ag solder for the suppression of Kirkendall void formation. Scr. Mater. 69, 254–257 (2013)

    Article  CAS  Google Scholar 

  77. L.L. Gao, S.B. Xue, L. Zhang, Z. Sheng, G. Zeng, F. Ji, Effects of trace rare earth Nd addition on microstructure and properties of SnAgCu solder. J. Mater. Sci. Mater. Electron. 21, 643–648 (2010)

    Article  CAS  Google Scholar 

  78. M.L. Li, L. Zhang, N. Jiang, L. Zhang, S.J. Zhong, Materials modification of the lead-free solders incorporated with micro/nano-sized particles: a review. Mater. Des. 197, 34 (2021)

    Article  Google Scholar 

  79. R.K. Chinnam, C. Fauteux, J. Neuenschwander, J. Janczak-Rusch, Evolution of the microstructure of Sn–Ag–Cu solder joints exposed to ultrasonic waves during solidification. Acta Mater. 59, 1474–1481 (2011)

    Article  CAS  Google Scholar 

  80. A.M. El-Taher, S. Azeem, A.A. Ibrahiem, Influence of permanent magnet stirring on dendrite morphological and elastic properties of a novel Sn–Ag–Cu–Sb–Al solder alloy by ultrasonic pulse echo method. J. Mater. Sci. Mater. Electron. 31, 9630–9640 (2020)

    Article  CAS  Google Scholar 

  81. K.S. Kim, S.H. Huh, K. Suganuma, Effects of intermetallic compounds on properties of Sn–Ag–Cu lead-free soldered joints. J. Alloys Compd. 352, 226–236 (2003)

    Article  CAS  Google Scholar 

  82. M. Yang, Y.H. Ko, J. Bang, T.S. Kim, C.W. Lee, M.Y. Li, Effects of Ag addition on solid-state interfacial reactions between Sn–Ag–Cu solder and Cu substrate. Mater. Charact. 124, 250–259 (2017)

    Article  CAS  Google Scholar 

  83. A.T. Tan, A.W. Tan, F. Yusof, Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn–Ag–Cu/Cu solder joint during different thermal conditions. Sci. Technol. Adv. Mater. 16, 18 (2015)

    Google Scholar 

  84. J.F. Li, P.A. Agyakwa, C.M. Johnson, Effect of trace Al on growth rates of intermetallic compound layers between Sn-based solders and Cu substrate. J. Alloys Compd. 545, 70–79 (2012)

    Article  CAS  Google Scholar 

  85. H.S. Levine, C.J. Maccallum, Grain boundary and lattice diffusion in polycrystalline bodies. J. Appl. Phys. 31, 595–599 (1960)

    Article  CAS  Google Scholar 

  86. Y. Tang, S.M. Luo, Z.H. Li, C.J. Hou, G.Y. Li, Morphological evolution and growth kinetics of interfacial Cu6Sn5 and Cu3Sn layers in low-Ag Sn–0.3Ag–0.7Cu–xMn/Cu solder joints during isothermal ageing. J. Electron. Mater. 47, 5913–5929 (2018)

    Article  CAS  Google Scholar 

  87. Y.H. Lee, H.T. Lee, Shear strength and interfacial microstructure of Sn–Ag–xNi/Cu single shear lap solder joints. Mater. Sci. Eng. A 444, 75–83 (2007)

    Article  Google Scholar 

  88. A.A. El-Daly, A. Fawzy, S.F. Mansour, M.J. Younis, Thermal analysis and mechanical properties of Sn–1.0Ag–0.5Cu solder alloy after modification with SiC nano-sized particles. J. Mater. Sci. Mater. Electron. 24, 2976–2988 (2013)

    Article  CAS  Google Scholar 

  89. H.Y. Song, Q.S. Zhu, Z.G. Wang, J.K. Shang, M. Lu, Effects of Zn addition on microstructure and tensile properties of Sn–1Ag–0.5Cu alloy. Mater. Sci. Eng. A 527, 1343–1350 (2010)

    Article  Google Scholar 

  90. K. Liu, W. Ding, X.M. Tao, H.M. Chen, Y.F. Ouyang, Y. Du, Diffusional behaviors and mechanical properties of Cu–Zn system. J. Alloys Compd. 812, 9 (2020)

    Article  Google Scholar 

  91. J. Wu, S.B. Xue, J.W. Wang, J.X. Wang, Comparative studies on microelectronic reliability issue of Sn whisker growth in Sn–0.3Ag–0.7Cu–1Pr solder under different environments. Microelectron. Reliab. 79, 124–135 (2017)

    Article  CAS  Google Scholar 

  92. P. Zhang, S.B. Xue, C. Qian, J.H. Wang, L. Liu, J. Wu, Influence of 005 wt% Pr addition on interfacial microstructure and mechanical properties of Sn–0.3Ag–0.7Cu/Cu solder joint during thermal shocking. J. Mater. Sci. Mater. Electron. 33, 7099–7108 (2022)

    Article  CAS  Google Scholar 

  93. Y. Tang, S.M. Luo, W.F. Huang, Y.C. Pan, G.Y. Li, Effects of Mn nanoparticles on tensile properties of low-Ag Sn–0.3Ag–0.7Cu–xMn solder alloys and joints. J. Alloys Compd. 719, 365–375 (2017)

    Article  CAS  Google Scholar 

  94. S.M.L. Nai, J. Wei, M. Gupta, Interfacial intermetallic growth and shear strength of lead-free composite solder joints. J. Alloys Compd. 473, 100–106 (2009)

    Article  CAS  Google Scholar 

  95. R.A.M. Anuar, S.A. Osman, The formation of intermetallic layer structure of SAC405/Cu and SAC405/ENImAg solder joint interfaces. Solder. Surf. Mt Technol. 33, 75–85 (2021)

    Article  Google Scholar 

  96. M.L. Huang, C.M.L. Wu, L. Wang, Creep resistance of tin-based lead-free solder alloys. J. Electron. Mater. 34, 1373–1377 (2005)

    Article  CAS  Google Scholar 

  97. S. Mukherjee, M. Nuhi, A. Dasgupta, M. Modarres, Creep constitutive models suitable for solder alloys in electronic assemblies. J. Electron. Packag. 138, 13 (2016)

    Article  Google Scholar 

  98. M. Sona, K.N. Prabhu, Review on microstructure evolution in Sn–Ag–Cu solders and its effect on mechanical integrity of solder joints. J. Mater. Sci. Mater. Electron. 24, 3149–3169 (2013)

    Article  CAS  Google Scholar 

  99. F.X. Che, Material characterization and low cycle fatigue model of low Ag content lead-free solder. IEEE Trans. Device Mater. Reliab. 17, 298–306 (2017)

    Article  CAS  Google Scholar 

  100. N. Hidaka, H. Watanabe, M. Yoshiba, Creep behavior of lead-free Sn–Ag–Cu plus Ni–Ge solder alloys. J. Electron. Mater. 38, 670–677 (2009)

    Article  CAS  Google Scholar 

  101. D.A.A. Shnawah, S.B.M. Said, M.F.B. Sabri, I.A. Badruddin, F.X. Che, Effect of minor additions of Fe on bulk alloy microstructure and tensile properties of the low Ag-content Sn–1Ag–0.5Cu solder alloy. Solder. Surf. Mt Technol. 24, 257–266 (2012)

    Article  Google Scholar 

  102. H.T. Ma, T.K. Lee, D.H. Kim, H.G. Park, S.H. Kim, K.C. Liu, Isothermal aging effects on the mechanical shock performance of lead-free solder joints. IEEE Trans. Compon. Packag. Manuf. Technol. 1, 714–721 (2011)

    Article  CAS  Google Scholar 

  103. C.Y. Liu, C.H. Lai, M.C. Wang, M.H. Hon, Thermal behavior and microstructure of the intermetallic compounds formed at the Sn–3Ag–0.5Cu/Cu interface after soldering and isothermal aging. J. Cryst. Growth 290, 103–110 (2006)

    Article  CAS  Google Scholar 

  104. A. Skwarek, M. Pluska, J. Ratajczak, A. Czerwinski, K. Witek, D. Szwagierczak, Analysis of tin whisker growth on lead-free alloys with Ni presence under thermal shock stress. Mater. Sci. Eng. B 176, 352–357 (2011)

    Article  CAS  Google Scholar 

  105. U.S. Mohanty, K.L. Lin, Corrosion behavior of Pb-free Sn–1Ag–0.5Cu–xNi solder alloys in 3.5% NaCl solution. J. Electron. Mater. 42, 628–638 (2013)

    Article  CAS  Google Scholar 

  106. B. Illes, T. Hurtony, B. Medgyes, Effect of current load on corrosion induced tin whisker growth from SnAgCu solder alloys. Corros. Sci. 99, 313–319 (2015)

    Article  CAS  Google Scholar 

  107. L. Zhang, L. Sun, J.G. Han, Y.H. Guo, Sizes effect of CeSn3 on the whiskers growth of SnAgCuCe solder joints in electronic packaging. J. Mater. Sci. Mater. Electron. 26, 6194–6197 (2015)

    Article  CAS  Google Scholar 

  108. N.W.B. Subri, M. Sarraf, B. Nasiri-Tabrizi, B. Ali, M.F.M. Sabri, W.J. Basirun et al., Corrosion insight of iron and bismuth added Sn–1Ag–0.5Cu lead-free solder alloy. Corros. Eng. Sci. Technol. 55, 35–47 (2020)

    Article  CAS  Google Scholar 

  109. N.K. Liyana, M.A. Fazal, A. Haseeb, S. Rubaiee, Effect of Zn incorporation on the electrochemical corrosion properties of SAC105 solder alloys. J. Mater. Sci. Mater. Electron. 30, 7415–7422 (2019)

    Article  CAS  Google Scholar 

  110. N.I.M. Nordin, S.M. Said, R. Ramli, K. Weide-Zaage, M.F.M. Sabri, A. Mamat et al., Impact of aluminium addition on the corrosion behaviour of Sn–1.0Ag–0.5Cu lead-free solder. RSC Adv. 5, 99058–99064 (2015)

    Article  CAS  Google Scholar 

  111. N.K. Liyana, M.A. Fazal, A. Haseeb, Polarization and EIS studies to evaluate the effect of aluminum concentration on the corrosion behavior of SAC105 solder alloy. Mater. Sci. Pol. 35, 694–701 (2017)

    Article  CAS  Google Scholar 

  112. S. Li, X.X. Wang, Z.Y. Liu, Y.T. Jiu, S.Y. Zhang, J.F. Geng et al., Corrosion behavior of Sn-based lead-free solder alloys: a review. J. Mater. Sci. Mater. Electron. 31, 9076–9090 (2020)

    Article  CAS  Google Scholar 

  113. A. Wierzbicka-Miernik, J. Guspiel, L. Zabdyr, Corrosion behavior of lead-free SAC-type solder alloys in liquid media. Arch. Civ. Mech. Eng. 15, 206–213 (2015)

    Article  Google Scholar 

  114. M.N. Wang, J.Q. Wang, H. Feng, W. Ke, Effect of Ag3Sn intermetallic compounds on corrosion of Sn–3.0Ag–0.5Cu solder under high-temperature and high-humidity condition. Corros. Sci. 63, 20–28 (2012)

    Article  CAS  Google Scholar 

  115. P.C. Pistorius, G.T. Burstein, Aspects of the effects of electrolyte-composition on the occurrence of metastable pitting on stainless-steel. Corros. Sci. 36, 525–538 (1994)

    Article  CAS  Google Scholar 

  116. G.T.T. Sheng, C.F. Hu, W.J. Choi, K.N. Tu, Y.Y. Bong, L. Nguyen, Tin whiskers studied by focused ion beam imaging and transmission electron microscopy. J. Appl. Phys. 92, 64–69 (2002)

    Article  CAS  Google Scholar 

  117. M. Fayeka, A. Haseeb, M.A. Fazal, Electrochemical corrosion behaviour of Pb-free SAC 105 and SAC 305 solder alloys: a comparative study. Sains Malays. 46, 295–302 (2017)

    Article  CAS  Google Scholar 

  118. H. Wang, Z.M. Gao, Y.C. Liu, C. Li, Z.Q. Ma, L.M. Yu, Evaluation of cooling rate on electrochemical behavior of Sn–0.3Ag–0.9Zn solder alloy in 3.5 wt% NaCl solution. J. Mater. Sci. Mater. Electron. 26, 11–22 (2015)

    Article  CAS  Google Scholar 

  119. A.A. El-Daly, K.M. Zohdy, M. Ragab, Corrosion and electrochemical behavior of Sn–2Ag–0.5Cu lead-free solders solidified with magnet stirring. J. Mater. Eng. Perform. 28, 4680–4692 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was under the support of Natural Science Foundation of Jiangsu Province (BK20211351).

Author information

Authors and Affiliations

Authors

Contributions

XL: Data curation, Writing—original draft preparation, LZ: Writing—reviewing and editing, ML, XW: Writing—reviewing and editing.

Corresponding author

Correspondence to Liang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The authors declare that this work is in compliance with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Zhang, L., Xi, W. et al. Structure and properties of low-Ag SAC solders for electronic packaging. J Mater Sci: Mater Electron 33, 22668–22705 (2022). https://doi.org/10.1007/s10854-022-09091-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09091-y

Navigation