Skip to main content
Log in

Effect of Al addition to bulk microstructure, IMC formation, wetting and mechanical properties of low-Ag SAC solder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The purpose of this work is to investigate the effect of various percentages of Al addition to bulk microstructure, intermetallic compound (IMC) formation, wetting and mechanical properties of Sn–0.3Ag–0.5Cu (SAC0305) solder. SAC0305, SAC-0.5Al, SAC-1Al, SAC-1.5Al and SAC-2Al solders were prepared via casting process. The solders were reflowed onto Cu substrate at 260 °C for 10 s. The composition of each solders were determined using X-Ray Fluorescent. Differential Scanning Calorimetry was used to evaluate the thermal properties while wetting balance test and spreading test were conducted to analyze the wettability. The microstructures of the bulk solder as well as the interfacial IMC layer were observed using Scanning Electron Microscope equipped with Energy Dispersive X-ray. Meanwhile, ball shear test was carried out to assess the reliability of the solder joints. Addition of Al had increased the melting and crystallization temperature of the solders but decreased the degree of undercooling. The wettability of solders decreased with the increasing amount of Al, but still in the acceptable range. Addition of Al had encouraged the formation of Ag–Al and Cu–Al IMC, suppressed the formation of Ag3Sn and Cu6Sn5 IMC and refined β-Sn dendrites. Further addition of Al above 1 wt% resulted in the formation of primary Al particles. The amount of Ag–Al and Cu–Al IMC and primary Al particles increased with increasing amount of Al. The Al-added solders have thinner IMC layer at the solder joint compared to SAC0305 for reflowed samples. The shear strength of Al added solder were higher than SAC0305 at high and low speed shear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Abtew, G. Selvaduray, Lead-free solders in microelectronics. Mater. Sci. Eng. 27, 95–141 (2000)

    Article  Google Scholar 

  2. W.R. Osório, L.C. Peixoto, L.R. Garcia, N. Mangelinck-Noël, A. Garcia, Microstructure and mechanical properties of Sn–Bi, Sn–Ag and Sn–Zn lead-free solder alloys. J. Alloys Compd. 572, 97–106 (2013). doi:10.1016/j.jallcom.2013.03.234

    Article  Google Scholar 

  3. X. Hu, K. Li, Z. Min, Microstructure evolution and mechanical properties of Sn0.7Cu0.7Bi lead-free solders produced by directional solidification. J. Alloys Compd. 566, 239–245 (2013). doi:10.1016/j.jallcom.2013.03.034

    Article  Google Scholar 

  4. M. Wang, J. Wang, H. Feng, W. Ke, Effect of Ag3Sn intermetallic compounds on corrosion of Sn-3.0Ag-0.5Cu solder under high-temperature and high-humidity condition. Corros. Sci. 63, 20–28 (2012). doi:10.1016/j.corsci.2012.05.006

    Article  Google Scholar 

  5. D. Li, C. Liu, P.P. Conway, Microstructure and shear strength evolution of Sn–Ag–Cu solder bumps during aging at different temperatures. J. Electron. Mater. 35, 388–398 (2006). doi:10.1007/BF02690524

    Article  Google Scholar 

  6. D.A.-A. Shnawah, S.B.M. Said, M.F.M. Sabri, I.A. Badruddin, T.G. Hoe, F.X. Che et al., Microstructure and tensile properties of Sn-1Ag-0.5Cu solder alloy bearing Al for electronics applications. J. Electron. Mater. 41, 2073–2082 (2012). doi:10.1007/s11664-012-2135-1

    Article  Google Scholar 

  7. T. Graedel, Material substitution: a resource supply perspective. Resour. Conserv. Recycl. 34, 107–115 (2002). doi:10.1016/S0921-3449(01)00097-0

    Article  Google Scholar 

  8. L.M. Higgins III, The move to lead-free manufacturing (n.d.). http://connection.ebscohost.com/c/articles/8654414/move-lead-free-manufacturing. Accessed 23 Jan 2015

  9. I.E. Anderson, Development of Sn–Ag–Cu and Sn–Ag–Cu–X alloys for Pb-free electronic solder applications, in Lead-free Electronic Solders (2006), pp. 55–76. doi:10.1007/978-0-387-48433-4_4

  10. K.S. Tan, K.Y. Cheong, Advances of Ag, Cu, and Ag–Cu alloy nanoparticles synthesized via chemical reduction route. J. Nanoparticle Res. 15, 1537 (2013). doi:10.1007/s11051-013-1537-1

    Article  Google Scholar 

  11. S. Terashima, Y. Kariya, T. Hosoi, M. Tanaka, Effect of silver content on thermal fatigue life of Sn–xAg–0.5Cu flip-chip interconnects, J. Electron. Mater. 1527–1533 (2003). http://www.scopus.com/inward/record.url?eid=2-s2.0-0942299489&partnerID=tZOtx3y1

  12. L.R. Garcia, W.R. Osório, L.C. Peixoto, A. Garcia, Mechanical properties of Sn–Zn lead-free solder alloys based on the microstructure array and Ag3Sn morphology. Mater. Charact. 562, 194–204 (2009). doi:10.1016/j.matchar.2009.11.012

    Google Scholar 

  13. A.K. Gain, T. Fouzder, Y.C. Chan, A. Sharif, W.K.C. Yung, Investigation of small Sn–3.5Ag–0.5Cu additions on the microstructure and properties of Sn–8Zn–3Bi solder on Au/Ni/Cu pads. J. Alloys Compd. 489, 678–684 (2010). doi:10.1016/j.jallcom.2009.09.150

    Article  Google Scholar 

  14. L.R. Garcia, W.R. Osório, A. Garcia, The effect of cooling rate on the dendritic spacing and morphology of Ag3Sn intermetallic particles of a SnAg solder alloy. Mater. Des. 32, 3008–3012 (2011). doi:10.1016/j.matdes.2010.12.046

    Article  Google Scholar 

  15. J. Gong, C. Liu, P.P. Conway, V.V. Silberschmidt, Modelling of Ag3Sn coarsening and its effect on creep of Sn–Ag eutectics. Mater. Sci. Eng. A 427, 60–68 (2006). doi:10.1016/j.msea.2006.04.034

    Article  Google Scholar 

  16. M.F.M. Sabri, D.A. Shnawah, I.A. Badruddin, S.B.M. Said, F.X. Che, T. Ariga, Microstructural stability of Sn–1Ag–0.5Cu–xAl (x = 1, 1.5, and 2 wt%) solder alloys and the effects of high-temperature aging on their mechanical properties. Mater. Charact. 78, 129–143 (2013). doi:10.1016/j.matchar.2013.01.015

    Article  Google Scholar 

  17. D.A.-A. Shnawah, S.B.M. Said, M.F.M. Sabri, I.A. Badruddin, F.X. Che, Microstructure, mechanical, and thermal properties of the Sn–1Ag–0.5Cu solder alloy bearing Fe for electronics applications. Mater. Sci. Eng. A 551, 160–168 (2012). doi:10.1016/j.msea.2012.04.115

    Article  Google Scholar 

  18. D. Kim, D. Suh, T. Millard, H. Kim, C. Kumar, M. Zhu et al., Evaluation of high compliant low Ag solder alloys on OSP as a drop solution for the 2nd level Pb-free interconnection, in 2007 Proceedings 57th Electron Components Technology Conferences, IEEE (2007), pp. 1614–1619. doi:10.1109/ECTC.2007.374010

  19. D. Suh, D.W. Kim, P. Liu, H. Kim, J.A. Weninger, C.M. Kumar et al., Effects of Ag content on fracture resistance of Sn–Ag–Cu lead-free solders under high-strain rate conditions. Mater. Sci. Eng. A 460–461, 595–603 (2007). doi:10.1016/j.msea.2007.01.145

    Article  Google Scholar 

  20. K. Kittidacha, W. Kanjanavikat, A. Vattananiyom, Effect of SAC alloy composition on drop and temp cycle reliability of BGA with NiAu pad finish, in Proceedings 10th IEEE-ECTC Conferences (2003) pp. 1074–1079

  21. S.-H. Huh, K.-S. Kim, K. Suganuma, Effects of Ag addition on the microstructural and mechanical properties of Sn–Cu eutectic solder. Mater. Trans. 42, 739–744 (2001). doi:10.2320/matertrans.42.739

    Article  Google Scholar 

  22. H.X. Xie, N. Chawla, Y.-L. Shen, Mechanisms of deformation in high-ductility Ce-containing Sn–Ag–Cu solder alloys. Microelectron. Reliab. 51, 1142–1147 (2011). doi:10.1016/j.microrel.2011.02.005

    Article  Google Scholar 

  23. K. Kanlayasiri, M. Mongkolwongrojn, T. Ariga, Influence of indium addition on characteristics of Sn–0.3Ag–0.7Cu solder alloy. J. Alloys Compd. 485, 225–230 (2009). doi:10.1016/j.jallcom.2009.06.020

    Article  Google Scholar 

  24. A.E. Hammad, Evolution of microstructure, thermal and creep properties of Ni-doped Sn–0.5Ag–0.7Cu low-Ag solder alloys for electronic applications. Mater. des. 52, 663–670 (2013)

    Article  Google Scholar 

  25. A.A. El-daly, A.M. El-taher, S. Gouda, Novel Bi-containing Sn–1.5Ag–0.7Cu lead-free solder alloy with further enhanced thermal property and strength for mobile products. J. Mater. 65, 796–805 (2015). doi:10.1016/j.matdes.2014.10.006

    Article  Google Scholar 

  26. A.-M. Yu, M.-S. Kim, C.-W. Lee, J.-H. Lee, Wetting and interfacial reaction characteristics of Sn-1.2Ag-0.5Cu-xIn quaternary solder alloys. Met. Mater. Int. 17, 521–526 (2011). doi:10.1007/s12540-011-0634-x

    Article  Google Scholar 

  27. L. Gao, S. Xue, L. Zhang, Z. Sheng, F. Ji, W. Dai et al., Effect of alloying elements on properties and microstructures of SnAgCu solders. Microelectron. Eng. 87, 2025–2034 (2010). doi:10.1016/j.mee.2010.04.007

    Article  Google Scholar 

  28. Y.-S. Park, Y.-M. Kwon, H.-Y. Son, J.-T. Moon, B.-W. Jeong, K.-I. Kang et al., Effect of Sb addition in Sn–Ag–Cu solder balls on the drop test reliability of BGA packages with electroless nickel immersion gold (ENIG) surface finish, in 2007 International Conferences Electronic Material Package, IEEE (2007). pp. 1–5. doi:10.1109/EMAP.2007.4510317

  29. A.-M. Yu, J.-K. Kim, J.-H. Lee, M.-S. Kim, Pd-doped Sn–Ag–Cu–In solder material for high drop/shock reliability. Mater. Res. Bull. 45, 359–361 (2010). doi:10.1016/j.materresbull.2009.12.030

    Article  Google Scholar 

  30. M.N. Islam, Y.C. Chan, Wetting and interfacial reactions of Sn-Zn based lead-free solder alloys as replacement of Sn-Pb solder, in Proceeding 2005 International conferences Asian green electronic design for manufacturability and reliability 2005AGEC. (2005), pp. 178–184. doi:10.1109/AGEC.2005.1452341

  31. K.J. Puttlitz, K.A. Stalter, Handbook of lead-free solder technology for microelectronic assemblies (CRC Press, 2004). http://books.google.com/books?hl=en&lr=&id=7FX5LkxfRpwC&pgis=1. Accessed 25 Jan 2015

  32. Atsdr, Toxicological profile for aluminum. Cutan. Ocul. Toxicol. 18, 357 (2008). doi:10.3109/15569529909037564

    Google Scholar 

  33. M. Rettenmayr, P. Lambracht, B. Kempf, M. Graff, High melting Pb-Free solder alloys for die-attach applications. Adv. Eng. Mater. 7, 965–969 (2005). doi:10.1002/adem.200500124

    Article  Google Scholar 

  34. K. Suganuma, S. Kim, K. Kim, High-temperature lead-free solders: properties and possibilities. JOM 61(1), 64–71 (2009)

    Article  Google Scholar 

  35. R.E. Smallman, R.J. Bishop, Modern Physical Metallurgy and Materials Engineering, 6th edn. (1999), pp. 42–83

    Book  Google Scholar 

  36. E.B. Ferreira, M.L. Lima, E.D. Zanotto, DSC method for determining the liquidus temperature of glass-forming systems. J. Am. Ceram. Soc. 93, 3757–3763 (2010). doi:10.1111/j.1551-2916.2010.03976.x

    Article  Google Scholar 

  37. A.A. El-Daly, W.M. Desoky, T.A. Elmosalami, M.G. El-Shaarawy, A.M. Abdraboh, Microstructural modifications and properties of SiC nanoparticles-reinforced Sn–3.0Ag–0.5Cu solder alloy. Mater. Des. 65, 1196–1204 (2015). doi:10.1016/j.matdes.2014.08.058

    Article  Google Scholar 

  38. A.A. El-Daly, G.S. Al-Ganainy, A. Fawzy, M.J. Younis, Structural characterization and creep resistance of nano-silicon carbide reinforced Sn–1.0Ag–0.5Cu lead-free solder alloy. Mater. Des. 55, 837–845 (2014). doi:10.1016/j.matdes.2013.10.043

    Article  Google Scholar 

  39. S.K. Kang, W.K. Choi, D. Shih, D.W. Henderson, T. Gosselin, A. Sarkhel et al., Ag3Sn plate formation in the solidification of near-ternary eutectic Sn–Ag–Cu measurement. JOM 55(6), 61–65 (2003)

    Article  Google Scholar 

  40. Lead Free Solder Reflow for Semiconductor Power Devices, article AN 0601 (2006), pp. 1–3. www.ixys.com. Accessed 16 Mar 2015

  41. A.A. El-Daly, A.E. Hammad, G.S. Al-Ganainy, M. Ragab, Influence of Zn addition on the microstructure, melt properties and creep behavior of low Ag-content Sn–Ag–Cu lead-free solders. Mater. Sci. Eng. A 608, 130–138 (2014). doi:10.1016/j.msea.2014.04.070

    Article  Google Scholar 

  42. A.E. Hammad, Investigation of microstructure and mechanical properties of novel Sn–0.5Ag–0.7Cu solders containing small amount of Ni. Mater. Des. 50, 108–116 (2013)

    Article  Google Scholar 

  43. J.K. Walleser, I.E. Anderson, Microstructure control of the Sn–Ag–Cu–X solder alloy system through nucleation catalysis of Sn (2008). http://gradworks.umi.com/14/74/1474773.html. Accessed 30 Jan 2015

  44. A.N. Campbell, R. Kartzmark, The systems aluminum-tin and aluminum-lead-tin. Can. J. Chem. 34(10), 1428–1439 (1956)

    Article  Google Scholar 

  45. A. Kantarcıoğlu, Y.E. Kalay, Effects of Al and Fe additions on microstructure and mechanical properties of SnAgCu eutectic lead-free solders. Mater. Sci. Eng. A 593, 79–84 (2014). doi:10.1016/j.msea.2013.11.025

    Article  Google Scholar 

  46. W. Ryan, Properties of ceramic raw materials. Elsevier (1978). doi:10.1016/B978-0-08-022113-7.50007-1

    Google Scholar 

  47. R.T. Hrubiec, M.B. Smith, Silver nitrate/alumina: a chromatographic reaction medium for conversion of 5-halogenopent-2-enes into 1-cyclopropylethyl nitrate. J. Chem. Soc. Perkin Trans. 1, 107 (1984). doi:10.1039/p19840000107

    Article  Google Scholar 

  48. V. Kripesh, C.T. Tai, G. Vishwanadam, Development of a lead free chip scale package for wireless applications, in 2001 Proceedings 51st Electronic Components Technology Conferences (Cat. No. 01CH37220), IEEE, (2001), pp. 665–670. doi:10.1109/ECTC.2001.927802

  49. K. Chew, V. Kho, Comparative wetting ability of lead-free alloys. Time 3, 3–8 (2003)

    Google Scholar 

  50. G. Kumar, K.N. Prabhu, N. Prabhu, S.W. Dean, Wetting behavior of solders. J. ASTM Int. 7, 103055 (2010). doi:10.1520/JAI103055

    Article  Google Scholar 

  51. C.J.J. Hang, C.Q.Q. Wang, M. Mayer, Y.H.H. Tian, Y. Zhou, H.H.H. Wang, Growth behavior of Cu/Al intermetallic compounds and cracks in copper ball bonds during isothermal aging. Microelectron. Reliab. 48, 416–424 (2008). doi:10.1016/j.microrel.2007.06.008

    Article  Google Scholar 

  52. Y. Tang, G.Y. Li, Y.C. Pan, Influence of TiO2 nanoparticles on IMC growth in Sn–3.0Ag–0.5Cu–xTiO2 solder joints in reflow process. J. Alloys Compd. 554, 195–203 (2013). doi:10.1016/j.jallcom.2012.12.019

    Article  Google Scholar 

  53. D.-G. Kim, S.-B. Jung, Interfacial reactions and growth kinetics for intermetallic compound layer between In–48Sn solder and bare Cu substrate. J. Alloys Compd. 386, 151–156 (2005). doi:10.1016/j.jallcom.2004.05.055

    Article  Google Scholar 

  54. X. Ma, F. Wang, Y. Qian, F. Yoshida, Development of Cu–Sn intermetallic compound at Pb-free solder/Cu joint interface. Mater. Lett. 57, 3361–3365 (2003). doi:10.1016/S0167-577X(03)00075-2

    Article  Google Scholar 

  55. I. Aisha, A. Ourdjini, A. Astuty, O. Azlina, Effect of silver content on intermetallic formation on copper and immersion silver surface finishes (n.d.). https://scholar.google.com/scholar?cluster=17551346128779884658&hl=en&oi=scholarr#0. Accessed 31 Jan 2015

  56. B. Chao, S.-H. Chae, X. Zhang, K.-H. Lu, J. Im, P.S. Ho, Investigation of diffusion and electromigration parameters for Cu–Sn intermetallic compounds in Pb-free solders using simulated annealing. Acta Mater. 55, 2805–2814 (2007). doi:10.1016/j.actamat.2006.12.019

    Article  Google Scholar 

  57. G. Li, X. Shi, N. Metals, Effects of bismuth on growth of intermetallic compounds in Sn–Ag–Cu Pb-free solder joints. Trans. Nonferrous Met. Soc. China 16, s739–s743 (2006). doi:10.1016/S1003-6326(06)60292-6

    Article  Google Scholar 

  58. K.N. Tu, R.D. Thompson, Kinetics of interfacial reaction in bimetallic Cu/Sn thin films. Acta Metall. 30, 947–952 (1982). doi:10.1016/0001-6160(82)90201-2

    Article  Google Scholar 

  59. H. Nishikawa, N. Iwata, Formation and growth of intermetallic compound layers at the interface during laser soldering using Sn–Ag Cu solder on a Cu Pad. J. Mater. Process. Technol. 215, 6–11 (2014). doi:10.1016/j.jmatprotec.2014.08.007

    Article  Google Scholar 

  60. B.F. Dyson, Interstitial diffusion of copper in tin. J. Appl. Phys. 38, 3408 (1967). doi:10.1063/1.1710127

    Article  Google Scholar 

  61. K. Hoshino, Y. Iijima, K. Ichi Hirano, Interdiffusion and Kirkendall effect in Cu–Sn alloys. Trans. Jpn. Inst. Metals 21, 674–682 (1980)

    Article  Google Scholar 

  62. J.F. Li, P.A. Agyakwa, C.M. Johnson, Effect of trace Al on growth rates of intermetallic compound layers between Sn-based solders and Cu substrate. J. Alloys Compd. 545, 70–79 (2012). doi:10.1016/j.jallcom.2012.08.023

    Article  Google Scholar 

  63. O.O.M. Abdelhadi, L. Ladani, IMC growth of Sn-3.5 Ag/Cu system: Combined chemical reaction and diffusion mechanisms. J. Alloys Compd. 537, 87–99 (2012). doi:10.1016/j.jallcom.2012.04.068

    Article  Google Scholar 

  64. B.L. Chen, G.Y. Li, Influence of Sb on IMC growth in Sn–Ag–Cu–Sb Pb-free solder joints in reflow process. Thin Solid Films 462–463, 395–401 (2004). doi:10.1016/j.tsf.2004.05.063

    Article  Google Scholar 

  65. D.K.B. Donald R Askeland, Pradeep P Fulay, Essentials of materials science and engineering: SI edition (2010), p. 604. http://library.alibris.com/Essentials-of-Materials-Science-and-Engineering-SI-Edition-Donald-R-Askeland/book/11310680. Accessed 31 Jan 2015

  66. S. Li, C. Basaran, Effective diffusivity of lead free solder alloys. Comput. Mater. Sci. 47, 71–78 (2009). doi:10.1016/j.commatsci.2009.06.015

    Article  Google Scholar 

  67. D.Q. Yu, C.M.L. Wu, C.M.T. Law, L. Wang, J.K.L. Lai, Intermetallic compounds growth between Sn–3.5Ag lead-free solder and Cu substrate by dipping method. J. Alloys Compd. 392, 192–199 (2005). doi:10.1016/j.jallcom.2004.09.023

    Article  Google Scholar 

  68. S.-S. Ha, J.-K. Jang, S.-O. Ha, J.-W. Kim, J.-W. Yoon, B.-W. Kim et al., Mechanical property evaluation of Sn-3.0A-0.5Cu BGA solder joints using high-speed ball shear test. J. Electron. Mater. 38, 2489–2495 (2009). doi:10.1007/s11664-009-0916-y

    Article  Google Scholar 

  69. J.-W.W. Kim, Y.-C.C. Lee, S.-S.S. Ha, S.-B.B. Jung, Failure behaviors of BGA solder joints under various loading conditions of high-speed shear test. J. Mater. Sci.: Mater. Electron. 20, 17–24 (2008). doi:10.1007/s10854-008-9588-2

    Google Scholar 

  70. M.O.O. Alam, H. Lu, C. Bailey, Y.C.C. Chan, Fracture mechanics analysis of solder joint intermetallic compounds in shear test. Comput. Mater. Sci. 45, 576–583 (2009). doi:10.1016/j.commatsci.2008.12.001

    Article  Google Scholar 

  71. X. Huang, Investigation and analysis on the solder ball shear strength of plastic ball grid array, chip scale, and flip chip packages with eutectic Pb-Sn and Pb-free solders, (2003). http://repository.ust.hk/ir/Record/1783.1-596. Accessed 30 Jan 2015

  72. W.D. Callister, D.G. Rethwisch, Fundamentals of Materials Science and Engineering: An Integrated Approach, 4th edn. (2012), pp. 197–233

  73. K. Zeng, R. Stierman, T.-C. Chiu, D. Edwards, K. Ano, K.N. Tu, Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability. J. Appl. Phys. 97, 024508 (2005). doi:10.1063/1.1839637

    Article  Google Scholar 

  74. S.-M.M. Joo, H.-K.K. Kim, Shear deformation behavior of a Sn–3Ag–0.5Cu single solder ball at intermediate strain rates. Mater. Sci. Eng. A 528, 2711–2717 (2011). doi:10.1016/j.msea.2010.12.003

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Fundamental Research Grant Scheme (FRGS) Grant No. 203/PBAHAN/6071243. The authors gratefully acknowledge the support provided by Ministry of Education Malaysia (MOE) and Universiti Sains Malaysia (USM) for ASTS fellowship scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Nurulakmal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslinda, K., Anasyida, A.S. & Nurulakmal, M.S. Effect of Al addition to bulk microstructure, IMC formation, wetting and mechanical properties of low-Ag SAC solder. J Mater Sci: Mater Electron 27, 489–502 (2016). https://doi.org/10.1007/s10854-015-3780-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3780-y

Keywords

Navigation