Skip to main content
Log in

The investigation of interfacial and crystallographic observation in the Ni(V)/SAC/OSP Cu solder joints with high and low silver content during thermal cycling test

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study investigated the microstructure and grain orientation of Ni(V)/SAC396/OSP Cu and Ni(V)/SAC105/OSP Cu solder joints during thermal cycling test (TCT). In general, adjusting Ag content in solders influenced the performance of thermal cycling (TC). Nevertheless, it is still crucial to find the optimal condition of Ag and related mechanisms of crack formation during TCT. This study applied FE-SEM to observe the crack propagation and the precipitation of Sn–Ag IMCs in the solders. Moreover, FE-EPMA and EBSD were used to detect the elemental distribution and grain orientation near the cracks, respectively. The locations of crack initiation are strongly related to the CTE mismatch between Si chip and solder alloy. Besides, the large number of Ag3Sn precipitations in the joint with high Ag content efficiently hinder the crack propagation due to the effects of precipitation hardening. It is revealed that the Ni(V)/SAC396/OSP Cu exhibits good thermal stability during thermal cycle test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Luo, Z. Chen, A. Hu, M. Li, Mater. Sci. Eng., A 556, 885–890 (2012)

    Article  Google Scholar 

  2. S. Ahat, M. Sheng, L. Luo, J. Electron. Mater. 30, 1317–1322 (2001)

    Article  Google Scholar 

  3. H.T. Lee, Y.H. Lee, Mater. Sci. Eng., A 419, 172–180 (2006)

    Article  Google Scholar 

  4. C.M. Chuang, P.C. Shih, K.L. Lin, J. Electron. Mater. 33, 1–6 (2004)

    Article  Google Scholar 

  5. I. Shohji, T. Yoshida, T. Takahashi, S. Hioki, Mater. Sci. Eng., A 366, 50–55 (2004)

    Article  Google Scholar 

  6. C.F. Tseng, C.J. Lee, J.G. Duh, Mater. Sci. Eng., A 574, 60–67 (2013)

    Article  Google Scholar 

  7. C. Andersson, P.E. Tegehall, D.R. Andersson, G. Wetter, J. Liu, Fellow. IEEE. 31, 331–344 (2008)

    Google Scholar 

  8. Y. Kwon, H. Bang, S. Joo, H. Bang, Microelectron. Reliab. 55, 442–447 (2015)

    Article  Google Scholar 

  9. Y. Sun, J. Liang, Z.H. Xu, G. Wang, X. Li, J. Electron. Mater. 38, 400–409 (2009)

    Article  Google Scholar 

  10. B. Arfaei, S.M. Shirazi, S. Joshi, M. Anselm, P. Borgesen, E. Cotts, J. Wilcox, R. Coyle, IEEE Electron (Compon. & Tech, Conf, 2013)

    Google Scholar 

  11. J. Han, H. Chen, M. Li, Acta Metall. Sin. 25, 214–224 (2012)

    Google Scholar 

  12. B. Zhou, Q. Zhou, Thomas R. Bieler, T.K. Lee. J. Electron. Mater. 44, 895–908 (2015)

    Article  Google Scholar 

  13. M. Amagai, M. Watanabe, M. Omiya, K. Kishimoto, T. Shibuya, Microelectron. Reliab. 42, 951–966 (2002)

    Article  Google Scholar 

  14. F.X. Che, W.H. Zhu, Edith S.W. Pohb, X.W. Zhanga, X.R. Zhang. J. Alloys Compd. 507, 215–224 (2010)

    Article  Google Scholar 

  15. S. Terashima, Y. Kariya, T. Hosoi, M. Tanaka, J. Electron. Mater. 32, 1527–1533 (2003)

    Article  Google Scholar 

  16. L. Yin, L. Wentlent, L. Yang, B. Arfaei, A. Oasaimeh, P. Borgesen, J. Electron. Mater. 41, 241–252 (2012)

    Article  Google Scholar 

  17. J. Hokka, T.T. Mattila, H. Xu, M. Paulasto-kröckel. J. Electron. Mater. 42, 963–972 (2013)

    Article  Google Scholar 

  18. R. Abbaschian, L. Abbaschian, R.E. Reed-Hill, Physical Metallurgy Principles, 4th edn. (Cengage Learning, Stamford, 2010), pp. 515–518

    Google Scholar 

  19. H. Chen, J. Han, J. Li, M. Li, Microelectron. Reliab. 52, 1112–1120 (2012)

    Article  Google Scholar 

  20. S. Park, R. Dhakal, L. Lehman, E. Cotts, Acta Mater. 55, 3253 (2007)

    Article  Google Scholar 

  21. M.A. Matin, W.P. Vellinga, M.G.D. Geers, Mater. Sci. Eng., A 73, 445–446 (2007)

    Google Scholar 

  22. T.T. Mattila, H. Xu, O. Ratia, M. Paulasto-Kröckel, IEEE 2010 Proceedings 60th Electron Component and Tech nical Conf erence (ECTC), Las Vegas, NV, 581, (2010), pp. 1–4

  23. T.K. Lee, K.C. Liu, T.R. Bieler, J. Electron. Mater. 38, 2685 (2009)

    Article  Google Scholar 

  24. T.R. Bieler, H. Jiang, L.P. Lehman, T. Kirkpatrick, E.J. Cotts, B. Nandagopal, IEEE Trans. Compon. Packag. Technol. 31, 370 (2008)

    Article  Google Scholar 

  25. H. Chen, J. Li, M. Li, J. Alloys Compd. 540, 32–35 (2012)

    Article  Google Scholar 

  26. H.F. Hsu, S.W. Chen, Acta Mater. 52, 2541–2547 (2004)

    Article  Google Scholar 

  27. M. Maleki, J. Cugnoni, J. Botsis, Acta Mater. 61, 103–114 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Ministry of Science and Technology (MOST), Taiwan, under the Contract No. NSC-103-2221-E-007-020-MY3 and the technical support from Industrial Technology Research Institute, Electronics and Optoelectronics Research Laboratories, Advanced Package Technology Division: 3D Stacking and Reliability Technology Department are much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenq-Gong Duh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C.J., Chen, WY., Chou, TT. et al. The investigation of interfacial and crystallographic observation in the Ni(V)/SAC/OSP Cu solder joints with high and low silver content during thermal cycling test. J Mater Sci: Mater Electron 26, 10055–10061 (2015). https://doi.org/10.1007/s10854-015-3687-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3687-7

Keywords

Navigation