Skip to main content
Log in

Present status of Sn–Zn lead-free solders bearing alloying elements

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recently, the Sn–Zn family of alloys, which possesses many attractive advantages such as relatively low melting point, cheap cost and the environmentally friendly component of Zn, has been widely used in electronic industry as one of the most potential replacements for the traditional Sn–Pb solders. However, there’re still some arguments on its shortcomings about the poor wettability and the weak oxidation resistance, which definitely limits its further application in lead-free electronic manufacturing. In order to overcome these disadvantages and further enhance the properties of Sn–Zn lead-free solders, alloying elements such as RE, Bi, Ag, Al, Ga, Cu, etc. were selected by lots of researchers as alloys addition into the solders. This paper summarizes the effects of alloying elements on the wettability, oxidation resistance, mechanical properties and microstructures of Sn–Zn lead-free solder alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. S.M. Hayes, N. Chawla, D.R. Frear, Interfacial fracture toughness of Pb-free solders. Microelectron. Reliab. 49(3), 269–287 (2009)

    Article  Google Scholar 

  2. S. Chada, Topics in lead-free solders: interfacial and Sn whisker growth. J. Miner. Met. Mater. Soc. 64(10), 1174–1175 (2012)

    Article  Google Scholar 

  3. J. Chen, J. Shen, D. Min et al., Influence of minor Bi additions on the interfacial morphology between Sn–Zn–xBi solders and a Cu layer. J. Mater. Sci. Mater. Electron. 20(11), 1112–1117 (2009)

    Article  Google Scholar 

  4. S.K. Seo, S.K. Kang, D.Y. Shih et al., The evolution of microstructure and microhardness of Sn–Ag and Sn–Cu solders during high temperature aging. Microelectron. Reliab. 49(3), 288–295 (2009)

    Article  Google Scholar 

  5. J.O. Kim, J.P. Jung, J.H. Lee et al., Effects of laser parameters on the characteristics of a Sn-3.5 wt% Ag solder joint. Met. Mater. Int. 15(1), 119–123 (2009)

    Article  Google Scholar 

  6. Y. Shi, J. Tian, H. Hao et al., Effects of small amount addition of rare earth Er on microstructure and property of SnAgCu solder. J. Alloys Compd. 453(1), 180–184 (2008)

    Article  Google Scholar 

  7. N. Zhao, X.Y. Liu, M.L. Huang et al., Characters of multicomponent lead-free solders. J. Mater. Sci. Mater. Electron. 24(10), 3925–3931 (2013)

    Article  Google Scholar 

  8. H. Ma, J.C. Suhling, A review of mechanical properties of lead-free solders for electronic packaging. J. Mater. Sci. 44(5), 1141–1158 (2009)

    Article  Google Scholar 

  9. X.P. Zhang, L.M. Yin, C.B. Yu, Thermal creep and fracture behaviors of the lead-free Sn-Ag-Cu-Bi solder interconnections under different stress levels. J. Mater. Sci. Mater. Electron. 19(4), 393–398 (2008)

  10. L. Zhang, S. Xue, L. Gao et al., Development of Sn–Zn lead-free solders bearing alloying elements. J. Mater. Sci. Mater. Electron. 21(1), 1–15 (2010)

    Article  Google Scholar 

  11. G. Zeng, S. Xue, L. Zhang et al., Properties and microstructure of Sn–0.7Cu–0.05Ni solder bearing rare earth element Pr. J. Mater. Sci. Mater. Electron. 22(8), 1101–1108 (2011)

    Article  Google Scholar 

  12. G. Zeng, S. Xue, L. Zhang et al., Recent advances on Sn–Cu solders with alloying elements: review. J. Mater. Sci. Mater. Electron. 22(6), 565–578 (2011)

    Article  Google Scholar 

  13. G. Zeng, S. Xue, L. Zhang et al., A review on the interfacial intermetallic compounds between Sn–Ag–Cu based solders and substrates. J. Mater. Sci. Mater. Electron. 21(5), 421–440 (2010)

    Article  Google Scholar 

  14. L. Zhang, S. Xue, Y. Chen et al., Effects of cerium on Sn–Ag–Cu alloys based on finite element simulation and experiments. J. Rare Earths 27(1), 138–144 (2009)

    Article  Google Scholar 

  15. P. Liu, P. Yao, J. Liu, Effects of multiple reflows on interfacial reaction and shear strength of SnAgCu and SnPb solder joints with different PCB surface finishes. J. Alloys Compd. 470(1), 188–194 (2009)

    Article  Google Scholar 

  16. D. Luo, S. Xue, Z. Li, Effects of Ga addition on microstructure and properties of Sn–0.5Ag–0.7Cu solder. J. Mater. Sci. Mater. Electron. 25(8), 3566–3571 (2014)

    Article  Google Scholar 

  17. D.X. Luo, S.B. Xue, S. Liu, Investigation on the intermetallic compound layer growth of Sn–0.5Ag–0.7Cu–xGa/Cu solder joints during isothermal aging. J. Mater. Sci. Mater. Electron. 25(12), 5195–5200 (2014)

    Article  Google Scholar 

  18. M. Erinc, T.M. Assman, P.J.G. Schreurs et al., Fatigue fracture of SnAgCu solder joints by microstructural modeling. Int. J. Fract. 152(1), 37–49 (2008)

    Article  Google Scholar 

  19. R.M. Shalaby, Correlation between thermal diffusivity and activation energy of ordering of lead free solder alloys Sn65–xAg25Sb10Cu x rapidly solidified from molten state. J. Mater. Sci. Mater. Electron. 16(4), 187–191 (2005)

    Article  Google Scholar 

  20. L. Zhang, S. Xue, L. Gao et al., Effects of trace amount addition of rare earth on properties and microstructure of Sn–Ag–Cu alloys. J. Mater. Sci. Mater. Electron. 20(12), 1193–1199 (2009)

    Article  Google Scholar 

  21. L. Zhang, S. Xue, L. Gao et al., Properties of SnAgCu/SnAgCuCe soldered joints for electronic packaging. J. Mater. Sci. Mater. Electron. 21(6), 635–642 (2010)

    Article  Google Scholar 

  22. X.P. Zhang, C.B. Yu, S. Shrestha et al., Creep and fatigue behaviors of the lead-free Sn–Ag–Cu–Bi and Sn60Pb40 solder interconnections at elevated temperatures. J. Mater. Sci. Mater. Electron. 18(6), 665–670 (2007)

    Article  Google Scholar 

  23. W.M. Xiao, Y.W. Shi, Y.P. Lei et al., In situ scanning electron microscopy observation of tensile deformation in Sn–Ag–Cu alloys containing rare-earth elements. J. Electron. Mater. 37(11), 1751–1755 (2008)

    Article  Google Scholar 

  24. L. Gao, S. Xue, L. Zhang et al., Effects of trace rare earth Nd addition on microstructure and properties of SnAgCu solder. J. Mater. Sci. Mater. Electron. 21(7), 643–648 (2010)

    Article  Google Scholar 

  25. L. Gao, S. Xue, L. Zhang et al., Effect of praseodymium on the microstructure and properties of Sn3.8Ag0.7Cu solder. J. Mater. Sci. Mater. Electron. 21(9), 910–916 (2010)

    Article  Google Scholar 

  26. S. Kumar, D. Jung, J. Jung, Wetting behavior and elastic properties of low alpha SAC105 and pure Sn solder. J. Mater. Sci. Mater. Electron. 24(6), 1748–1757 (2013)

    Article  Google Scholar 

  27. J.B. Wan, Y.C. Liu, C. Wei et al., Effect of the soldering time on the formation of interfacial structure between Sn–Ag–Zn lead-free solder and Cu substrate. J. Mater. Sci. Mater. Electron. 19(12), 1160–1168 (2008)

    Article  Google Scholar 

  28. J.B. Wan, Y.C. Liu, C. Wei et al., Effect of Al content on the formation of intermetallic compounds in Sn–Ag–Zn lead-free solder. J. Mater. Sci. Mater. Electron. 19(3), 247–253 (2008)

    Article  Google Scholar 

  29. W.X. Chen, S.B. Xue, H. Wang, Wetting properties and interfacial microstructures of Sn–Zn–xGa solders on Cu substrate. Mater. Des. 31(4), 2196–2200 (2010)

    Article  Google Scholar 

  30. L.R. Garcia, W.R. Osorio, L.C. Peixoto et al., Mechanical properties of Sn–Zn lead-free solder alloys based on the microstructure array. Mater. Charact. 61(2), 212–220 (2010)

    Article  Google Scholar 

  31. C. Morando, O. Fornaro, O. Garbellini et al., Thermal properties of Sn-based solder alloys. J. Mater. Sci. Mater. Electron. 25(8), 3440–3447 (2014)

    Article  Google Scholar 

  32. P. Xue, S. Xue, Y. Shen et al., Effect of Pr on properties and Sn whisker growth of Sn–9Zn–xPr solder. Solder. Surf. Mount Technol. 24(4), 280–286 (2012)

    Article  Google Scholar 

  33. Q. Li, Y.C. Chan, K. Zhang et al., Study of microstructure evolution in novel Sn–Zn/Cu bi-layer and Cu/Sn–Zn/Cu sandwich structures with nanoscale thickness for 3D packaging interconnection. Microelectron. Eng. 122, 52–58 (2014)

    Article  Google Scholar 

  34. Y.X. Jing, G.M. Sheng, Z.H. Huang et al., Effects of 0.1 wt% Ni addition and rapid solidification process on Sn–9Zn solder. J. Mater. Sci. Mater. Electron. 24(12), 4868–4872 (2013)

    Article  Google Scholar 

  35. K.L. Lin, C.L. Shih, Microstructure and thermal behavior of Sn–Zn–Ag solders. J. Electron. Mater. 32(12), 1496–1500 (2003)

    Article  Google Scholar 

  36. S.W. Park, S. Nagao, T. Sugahara et al., Retarding intermetallic compounds growth of Zn high-temperature solder and Cu substrate by trace element addition. J. Mater. Sci. Mater. Electron. 24(12), 4704–4712 (2013)

    Article  Google Scholar 

  37. S. Amore, E. Ricci, G. Borzone et al., Wetting behaviour of lead-free Sn-based alloys on Cu and Ni substrates. Mater. Sci. Eng. A 495(1), 108–112 (2008)

    Article  Google Scholar 

  38. Q.V. Bui, S.B. Jung, Effect of Pd thickness on wettability and interfacial reaction of Sn–1.0Ag–Ce solders on ENEPIG surface finish. J. Mater. Sci. Mater. Electron. 25(1), 423–430 (2014)

    Article  Google Scholar 

  39. W. Feng, C. Wang, M. Morinaga, Electronic structure mechanism for the wettability of Sn-based solder alloys. J. Electron. Mater. 31(3), 185–190 (2002)

    Article  Google Scholar 

  40. Y. Hu, S. Xue, H. Wang et al., Effects of rare earth element Nd on the solderability and microstructure of Sn–Zn lead-free solder. J. Mater. Sci. Mater. Electron. 22(5), 481–487 (2011)

    Article  Google Scholar 

  41. P. Xue, S. Xue, Y. Shen et al., Wettability and interfacial whiskers of Sn–9Zn–0.5Ga–0.08Nd solder with Sn, SnBi and Au/Ni coatings. J. Mater. Sci. Mater. Electron. 25(8), 3520–3525 (2014)

    Article  Google Scholar 

  42. Z. Xiao, S. Xue, Y. Hu et al., Properties and microstructure of Sn–9Zn lead-free solder alloy bearing Pr. J. Mater. Sci. Mater. Electron. 22(6), 659–665 (2011)

    Article  Google Scholar 

  43. W.X. Chen, S. Xue, H. Wang et al., Effects of rare earth Ce on properties of Sn–9Zn lead-free solder. J. Mater. Sci. Mater. Electron. 21(7), 719–725 (2010)

    Article  Google Scholar 

  44. L. Zhang, J.G. Han, C.W. He, Y.H. Guo, Microstructures and properties of SnZn lead-free solder joints bearing La for electronic packaging. IEEE Trans. Electron Devices 59(12), 3269–3272 (2012)

    Article  Google Scholar 

  45. L. Zhang, J.G. Han, C.W. He, Y.H. Guo, Properties of SnZn lead-free solders bearing rare earth Y. Sci. Technol. Weld. Join. 17(5), 424–428 (2012)

    Article  Google Scholar 

  46. L. Zhang, J. Cui, J. Han et al., Microstructures and properties of SnZn-xEr lead-free solders. J. Rare Earths 30(8), 790–793 (2012)

    Article  Google Scholar 

  47. S.A. Mladenović, D.D. Marković, L.S. Ivanić et al., The microstructure and properties of as-cast Sn–Zn–Bi solder alloys. Hem. Ind. 66(4), 595–600 (2012)

    Article  Google Scholar 

  48. P. Fima, T. Gancarz, J. Pstruś et al., Wetting of Sn–Zn–xIn (x = 0.5, 1.0, 1.5 wt%) alloys on Cu and Ni substrates. J. Mater. Eng. Perform. 21(5), 595–598 (2012)

    Article  Google Scholar 

  49. Y.T. Wang, C.J. Ho, H.L. Tsai, Effect of In addition on wetting properties of Sn–Zn–In/Cu soldering. Mater. Trans. 51(10), 1735–1740 (2010)

    Article  Google Scholar 

  50. H. Huang, X. Wei, D. Tan et al., Effects of phosphorus addition on the properties of Sn–9Zn lead-free solder alloy. Int. J. Miner. Metall. Mater. 20(6), 563–567 (2013)

    Article  Google Scholar 

  51. W. Chen, S. Xue, H. Wang et al., Effects of Ag on Properties of Sn–9Zn lead-free solder. Rare Met. Mater. Eng. 39(10), 1702–1706 (2010)

    Article  Google Scholar 

  52. M. Yang, X.Z. Liu, X.H. Liu et al., Development of Sn–Zn–Cu lead free solder, in The 11th International Conference on Electronic Packaging Technology and High Density Packaging (Xi’an, China, 2010), pp. 784–788

  53. H. Wang, S. Xue, W. Chen et al., Effects of Ga–Ag, Ga–Al and Al–Ag additions on the wetting characteristics of Sn–9Zn–X–Y lead-free solders. J. Mater. Sci. Mater. Electron. 20(12), 1239–1246 (2009)

    Article  Google Scholar 

  54. H. Wang, S. Xue, F. Zhao et al., Effects of Ga, Al, Ag, and Ce multi-additions on the properties of Sn–9Zn lead-free solder. J. Mater. Sci. Mater. Electron. 21(2), 111–119 (2010)

    Article  Google Scholar 

  55. X.J. Wang, Q.S. Zhu, B. Liu et al., Effect of doping Al on the liquid oxidation of Sn–Bi–Zn solder. J. Mater. Sci. Mater. Electron. 25(5), 2297–2304 (2014)

    Article  Google Scholar 

  56. L. Zhang, L. Sun, Y.H. Guo et al., Reliability of lead-free solder joints in CSP device under thermal cycling. J. Mater. Sci. Mater. Electron. 25(3), 1209–1213 (2014)

    Article  Google Scholar 

  57. K.L. Lin, T.P. Liu, High-temperature oxidation of a Sn–Zn–Al solder. Oxid. Met. 50(3–4), 255–267 (1998)

    Article  Google Scholar 

  58. X. Wei, G. Ju, P. Sun et al., Microstructure evolution of Sn–Zn based lead-free solder joints aged in humid atmosphere at high temperature. Chin. J. Nonferr. Met. 16(7), 1177–1183 (2006)

    Google Scholar 

  59. N.S. Liu, K.L. Lin, Effect of Ga on the oxidation properties of Sn-8.5Zn-0.5Ag-0.1Al-xGa solders. Oxid. Met. 78(5–6), 285–294 (2012)

  60. H. Wang, S.B. Xue, W.X. Chen et al., Effects of Ga and Al additions on corrosion resistance and high-temperature oxidation resistance of Sn–9Zn lead-free solder. Rare Met. Mater. Eng. 38(12), 2187–2190 (2009)

    Google Scholar 

  61. J.X. Jiang, J.E. Lee, K.S. Kim et al., Oxidation behavior of Sn–Zn solders under high-temperature and high-humidity conditions. J. Alloys Compd. 462(1–2), 244–251 (2008)

    Article  Google Scholar 

  62. K.S. Kim, T. Matsuura, K. Suganuma, Effects of Bi and Pb on oxidation in humidity for low-temperature lead-free solder systems. J. Electron. Mater. 35(1), 41–47 (2006)

    Article  Google Scholar 

  63. W.X. Chen, S.B. Xue, H. Wang et al., Effects of Ag on microstructures, wettabilities of Sn–9Zn–xAg solders as well as mechanical properties of soldered joints. J. Mater. Sci. Mater. Electron. 21(5), 461–467 (2010)

    Article  Google Scholar 

  64. J.E. Lee, K.S. Kim, M. Inoue et al., Effects of Ag and Cu addition on microstructural properties and oxidation resistance of Sn–Zn eutectic alloy. J. Alloys Compd. 454(1–2), 310–320 (2008)

    Article  Google Scholar 

  65. W.X. Chen, S.B. Xue, H. Wang et al., Investigation on properties of Ga to Sn–9Zn lead-free solder. J. Mater. Sci. Mater. Electron. 21(5), 496–502 (2010)

    Article  Google Scholar 

  66. C.Y. Chou, S.W. Chen, Y.S. Chang, Interfacial reactions in the Sn–9Zn–(xCu)/Cu and Sn–9Zn–(xCu)/Ni couples. J. Mater. Res. 21(7), 1849–1856 (2006)

    Article  Google Scholar 

  67. N. Huang, A. Hu, M. Li et al., Influence of Cr alloying on the oxidation resistance of Sn–8Zn–3Bi solders. J. Mater. Sci. Mater. Electron. 24(8), 2812–2817 (2013)

    Article  Google Scholar 

  68. C.L. Wang, J. Zhou, Y.S. Sun et al., Investigation on oxidation resistance of Sn–8Zn–3Bi lead-free solder alloys. J. Southeast Univ. (Natural Science Edition) 38(4), 693–697 (2008)

    Google Scholar 

  69. J.W. Yoon, S.B. Jung, Reliability studies of Sn–9Zn/Cu solder joints with aging treatment. J. Alloys Compd. 407(1), 141–149 (2006)

    Article  Google Scholar 

  70. T. Gancarz, P. Fima, J. Pstruś, Thermal expansion, electrical resistivity, and spreading area of Sn–Zn–In alloys. J. Mater. Eng. Perform. 23(5), 1524–1529 (2014)

    Article  Google Scholar 

  71. P. Xue, S. Xue, Y. Shen et al., Study on properties of Sn–9Zn–Ga solder bearing Nd. J. Mater. Sci. Mater. Electron. 23(6), 1272–1278 (2012)

    Article  Google Scholar 

  72. R. Mahmudi, A.R. Geranmayeh, B. Zahiri et al., Effect of rare earth element additions on the impression creep of Sn–9Zn solder alloy. J. Mater. Sci. Mater. Electron. 21(1), 58–64 (2010)

    Article  Google Scholar 

  73. C.M.L. Wu, Y.W. Wong, Rare-earth additions to lead-free electronic solders. J. Mater. Sci. Mater. Electron. 18(1–3), 77–91 (2007)

    Google Scholar 

  74. A.A. El-Daly, Y. Swilem, M.H. Makled et al., Thermal and mechanical properties of Sn–Zn–Bi lead-free solder alloys. J. Alloys Compd. 484(1), 134–142 (2009)

    Article  Google Scholar 

  75. K.I. Chen, S.C. Cheng, C.H. Cheng et al., The effects of gallium additions on microstructures and thermal and mechanical properties of Sn–9Zn solder alloys. Adv. Mater. Eng. (2014). doi:10.1155/2014/606814

    Google Scholar 

  76. K. Chen, K.L. Lin, The microstructures and mechanical properties of the Sn–Zn–Ag–Al–Ga solder alloys—the effect of Ag. J. Electron. Mater. 31(8), 861–867 (2002)

    Article  Google Scholar 

  77. M.L. Huang, X.L. Hou, N. Kang et al., Microstructure and interfacial reaction of Sn–Zn–x (Al, Ag) near-eutectic solders on Al and Cu substrates. J. Mater. Sci. Mater. Electron. 25(5), 2311–2319 (2014)

    Article  Google Scholar 

  78. Y.T. Wang, C.J. Ho, H.L. Tsai, Effect of In addition on mechanical properties of Sn–9Zn–In/Cu solder, in The 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (Suzhou, China, 2013), pp. 1038–1041

  79. J.C. Liu, H.J. Yu, G. Zhang, et al., Constitutive behavior and Anand model of novel lead-free solder Sn–Zn–Bi–In-P, in 2014 International Conference on Electronics Packaging (ICEP) (Toyama, Japan, 2014), pp. 156–161

  80. M.L. Huang, N. Kang, Q. Zhou et al., Effect of Ni content on mechanical properties and corrosion behavior of Al/Sn–9Zn–xNi/Cu joints. J. Mater. Sci. Technol. 28(9), 844–852 (2012)

    Article  Google Scholar 

  81. S.H. Wang, T.S. Chin, C.F. Yang et al., Pb-free solder-alloy based on Sn–Zn–Bi with the addition of germanium. J. Alloys Compd. 497(1), 428–431 (2010)

    Article  Google Scholar 

  82. A.R. Geranmayeh, R. Mahmudi, Power law indentation creep of Sn–5%Sb solder alloy. J. Mater. Sci. 40(13), 3361–3366 (2005)

    Article  Google Scholar 

  83. R. Mahmudi, A.R. Geranmayeh, M. Bakherad et al., Indentation creep study of lead-free Sn–5%Sb solder alloy. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct 457(1–2), 173–179 (2007)

    Article  Google Scholar 

  84. H.T. Ma, Constitutive models of creep for lead-free solders. J. Mater. Sci. 44(14), 3841–3851 (2009)

    Article  Google Scholar 

  85. I. Dutta, A constitutive model for creep of lead-free solders undergoing strain-enhanced microstructural coarsening: a first report. J. Electron. Mater. 32(4), 201–207 (2003)

    Article  Google Scholar 

  86. Y.X. Zhu, X.Y. Li, R.T. Gao et al., Effect of hold time on the mechanical fatigue failure behavior of lead-free solder joint under high temperature. J. Mater. Sci. Mater. Electron. 25(9), 3863–3869 (2014)

    Article  Google Scholar 

  87. L. Zhang, S.B. Xue, Z.J. Han et al., Mechanical properties of fine pitch devices soldered joints based on creep model. Chin. J. Mech. Eng. 21(6), 82–85 (2008)

    Article  Google Scholar 

  88. B. Vandevelde, M. Gonzalez, P. Limaye et al., Thermal cycling reliability of SnAgCu and SnPb solder joints: a comparison for several IC-packages. Microelectron. Reliab. 47(2–3), 259–265 (2007)

    Article  Google Scholar 

  89. L. Yin, S. Wei, Z. Xu et al., The effect of joint size on the creep properties of microscale lead-free solder joints at elevated temperatures. J. Mater. Sci. Mater. Electron. 24(4), 1369–1374 (2013)

    Article  Google Scholar 

  90. J. Villain, W. Jillck, E. Schmitt, et al., Properties and reliability of SnZn-based lead-free solder alloys, in International IEEE Conference on the Asian Green Electronics (Hong Kong, China, 2004), pp. 38–41

  91. R. Mahmudi, A.R. Geranmayeh, H. Noori et al., Impression creep of hypoeutectic Sn–Zn lead-free solder alloys. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. 491(1–2), 110–116 (2008)

    Article  Google Scholar 

  92. T. Shrestha, S. Gollapudi, I. Charit et al., Creep deformation behavior of Sn–Zn solder alloys. J. Mater. Sci. 49(5), 2127–2135 (2014)

    Article  Google Scholar 

  93. R. Mahmudi, A.R. Geranmayeh, H. Khanbareh et al., Indentation creep of lead-free Sn–9Zn and Sn–8Zn–3Bi solder alloys. Mater. Des. 30(3), 574–580 (2009)

    Article  Google Scholar 

  94. A.A. El-Daly, A.E. Hammad, G.A. Al-Ganainy et al., Enhancing mechanical response of hypoeutectic Sn–6.5 Zn solder alloy using Ni and Sb additions. Mater. Des. 52, 966–973 (2013)

    Article  Google Scholar 

  95. G. Saad, A. Fawzy, E. Shawky, Effect of Ag addition on the creep characteristics of Sn-8.8 wt% Zn solder alloy. J. Alloys Compd. 479(1–2), 844–850 (2009)

    Article  Google Scholar 

  96. L. Zhang, S. Xue, L. Gao et al., Effects of rare earths on properties and microstructures of lead-free solder alloys. J. Mater. Sci. Mater. Electron. 20(8), 685–694 (2009)

    Article  Google Scholar 

  97. H. Ye, S. Xue, M. Pecht, Evaluation of the microstructure and whisker growth in Sn–Zn–Ga solder with Pr content. J. Mater. Res. 27(14), 1887–1894 (2012)

    Article  Google Scholar 

  98. H. Ye, S. Xue, L. Zhang et al., Sn whisker growth in Sn–9Zn–0.5Ga–0.7 Pr lead-free solder. J. Alloys Compd. 509(5), L52–L55 (2011)

    Article  Google Scholar 

  99. H. Ye, S. Xue, M. Pecht, Effects of thermal cycling on rare earth (Pr)-induced Sn whisker/hillock growth. Mater. Lett. 98, 78–81 (2013)

    Article  Google Scholar 

  100. H. Ye, S. Xue, C. Chen et al., Growth behaviors of tin whisker in RE-doped Sn–Zn–Ga solder. Solder. Surf. Mount Technol. 25(3), 139–144 (2013)

    Article  Google Scholar 

  101. P. Xue, S. Xue, Y. Shen et al., Inhibiting the growth of Sn whisker in Sn–9Zn lead-free solder by Nd and Ga. J. Mater. Sci. Mater. Electron. 25(6), 2671–2675 (2014)

    Article  Google Scholar 

  102. P. Xue, S. Xue, Y.F. Shen et al., Mechanism of reaction between Nd and Ga in Sn–Zn–0.5Ga–xNd solder. J. Electron. Mater. 43(9), 3404–3410 (2014)

    Article  Google Scholar 

  103. A.A. El-Daly, A.E. Hammad, Effects of small addition of Ag and/or Cu on the microstructure and properties of Sn–9Zn lead-free solders. Mater. Sci. Eng. A 527(20), 5212–5219 (2010)

    Article  Google Scholar 

  104. T. Luo, A. Hu, J. Hu, M. Li, D. Mao, Microstructure and mechanical properties of Sn–Zn–Bi–Cr lead-free solder. Microelectron. Reliab. 52(3), 585–588 (2012)

    Article  Google Scholar 

  105. X. Chen, A. Hu, M. Li et al., Study on the properties of Sn–9Zn–xCr lead-free solder. J. Alloys Compd. 460(1), 478–484 (2008)

    Article  Google Scholar 

  106. X.Z. Liu, M. Yang, X.H. Liu, et al., Microstructure and property of Sn–Zn–Cu–Bi lead free solder, in The 11th International Conference on Electronic Packaging Technology & High Density Packaging (Xi’an, China, 2010), pp. 789–793

  107. T.K. Yeh, K.L. Lin, U.S. Mohanty, Effect of Ag on the microstructure of Sn–8.5Zn–xAg–0.01Al–0.1Ga solders under high-temperature and high-humidity conditions. J. Electron. Mater. 42(4), 616–627 (2013)

    Article  Google Scholar 

  108. T.C. Chang, M.C. Wang, M.H. Hon, Growth and morphology of the intermetallic compounds formed at the Sn–9Zn–2.5 Ag/Cu interface. J. Alloys Compd. 402(1–2), 141–148 (2005)

    Article  Google Scholar 

  109. M. Date, K.N. Tu, T. Shoji et al., Interfacial reactions and impact reliability of Sn–Zn solder joints on Cu or electroless Au/Ni (P) bond-pads. J. Mater. Res. 19(10), 2887–2896 (2004)

    Article  Google Scholar 

  110. L. Zhang, J.G. Han, Y.H. Guo et al., Reliability of SnAgCu/SnAgCuCe solder joints with different heights for electronic packaging. J. Mater. Sci. Mater. Electron. 25(10), 4489–4494 (2014)

    Article  Google Scholar 

  111. Y. Liu, J. Meerwijk, L.L. Luo et al., Formation and evolution of intermetallic layer structures at SAC305/Ag/Cu and SAC0705–Bi–Ni/Ag/Cu solder joint interfaces after reflow and aging. J. Mater. Sci. Mater. Electron. 25(11), 4954–4959 (2014)

    Article  Google Scholar 

  112. H. Ye, S.B. Xue, J.D. Luo et al., Properties and interfacial microstructure of Sn–Zn–Ga solder joint with rare earth Pr addition. Mater. Des. 46, 816–823 (2013)

    Article  Google Scholar 

  113. K. Berent, P. Fima, T. Ganacarz et al., Wetting and microstructure evolution of the Sn–Zn–Ag/Cu interface. J. Mater. Eng. Perform. 23(5), 1630–1633 (2014)

    Article  Google Scholar 

  114. Y. Huang, S. Chen, Co alloying and size effects on solidification and interfacial reactions in the Sn–Zn–(Co)/Cu couples. J. Mater. Res. 25(12), 2430–2438 (2010)

    Article  Google Scholar 

  115. C.M. Chen, C.H. Chen, Interfacial reactions between eutectic SnZn solder and bulk or thin-film Cu substrates. J. Electron. Mater. 36(10), 1363–1371 (2007)

    Article  Google Scholar 

  116. T. Ichitsubo, E. Matsubara, K. Fujiwara et al., Control of compound forming reaction at the interface between SnZn solder and Cu substrate. J. Alloys Compd. 392(1–2), 200–205 (2005)

    Article  Google Scholar 

  117. N. Dariavach, P. Callahan, J. Liang et al., Intermetallic growth kinetics for Sn–Ag, Sn–Cu, and Sn–Ag–Cu lead-free solders on Cu, Ni, and Fe-42Ni substrates. J. Electron. Mater. 35(7), 1581–1592 (2006)

    Article  Google Scholar 

  118. R.K. Shiue, L.W. Tsay, C.L. Lin et al., The reliability study of selected Sn–Zn based lead-free solders on Au/Ni–P/Cu substrate. Microelectron. Reliab. 43(3), 453–463 (2003)

    Article  Google Scholar 

  119. J. Bi, A. Hu, J. Hu et al., Effect of Cr additions on interfacial reaction between the Sn–Zn–Bi solder and Cu/electroplated Ni substrates. Microelectron. Reliab. 51(3), 636–641 (2011)

    Article  Google Scholar 

  120. W. Liou, Y.W. Yen, C.C. Jao, Interfacial reactions of Sn–9Zn–xCu (x = 1, 4, 7, 10) solders with Ni substrates. J. Electron. Mater. 38(11), 2222–2227 (2009)

    Article  Google Scholar 

  121. P. Fima, J. Pstruś, T. Gancarz, Wetting and interfacial chemistry of SnZnCu alloys with Cu and Al substrates. J. Mater. Eng. Perform. 23(5), 1530–1535 (2014)

    Article  Google Scholar 

  122. C.S. Hsi, C.T. Lin, T.C. Chang et al., Interfacial reactions, microstructure, and strength of Sn–8Zn–3Bi and Sn–9Zn–Al solder on Cu and Au/Ni (P) pads. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 41(2), 275–284 (2010)

    Article  Google Scholar 

  123. M. Ahmed, T. Fouzder, A. Sharif et al., Influence of Ag micro-particle additions on the microstructure, hardness and tensile properties of Sn–9Zn binary eutectic solder alloy. Microelectron. Reliab. 50(8), 1134–1141 (2010)

    Article  Google Scholar 

  124. I. Shafiq, Y.C. Chan, N.B. Wong et al., Influence of small Sb nanoparticles additions on the microstructure, hardness and tensile properties of Sn–9Zn binary eutectic solder alloy. J. Mater. Sci. Mater. Electron. 23(7), 1427–1434 (2012)

    Article  Google Scholar 

  125. J. Shen, Y.C. Chan, Effects of ZrO2 nanoparticles on the mechanical properties of Sn–Zn solder joints on Au/Ni/Cu pads. J. Alloys Compd. 477(1–2), 552–559 (2009)

    Article  Google Scholar 

  126. A.K. Gain, Y.C. Chan, W.K.C. Yung, Effect of nano Ni additions on the structure and properties of Sn–9Zn and Sn–Zn–3Bi solders in Au/Ni/Cu ball grid array packages. Mater. Sci. Eng. B 162(2), 92–98 (2009)

    Article  Google Scholar 

  127. W.H. Zhong, Y.C. Chan, B.Y. Wu et al., Multiple reflow study of ball grid array (BGA) solder joints on Au/Ni metallization. J. Mater. Sci. 42(13), 5239–5247 (2007)

    Article  Google Scholar 

  128. G. Wei, M. Kuang, Y. Yang, Interfacial reaction of Sn–9Zn/Cu joint with Cu particle-reinforced composite solder Sn–9Zn. Trans. China Weld. Inst. 28(5), 105–108 (2007). (in Chinese)

    Google Scholar 

  129. T. Fouzder, A.K. Gain, Y.C. Chan et al., Effect of nano Al2O3 additions on the microstructure, hardness and shear strength of eutectic Sn–9Zn solder on Au/Ni metallized Cu pads. Microelectron. Reliab. 50(12), 2051–2058 (2010)

    Article  Google Scholar 

  130. T. Fouzder, Q. Li, Y.C. Chan et al., Interfacial microstructure and hardness of nickel(Ni) nanoparticle-doped tin–silver–copper(Sn–Ag–Cu) solders on immersion silver(Ag)-plated copper(Cu) substrates. J. Mater. Sci. Mater. Electron. 25(9), 4012–4023 (2014)

    Article  Google Scholar 

  131. T. Fouzder, Q. Li, Y.C. Chan et al., Microstructure and kinetic analysis of the properties and behavior of nickel (Ni) nano-particle doped tin–zinc–bismuth (Sn–8Zn–3Bi) solders on immersion silver (Ag)-plated copper (Cu) substrates. J. Mater. Sci. Mater. Electron. 25(6), 2529–2539 (2014)

    Article  Google Scholar 

  132. M.M. Billah, K.M. Shorowordi, A. Sharif, Effect of micron size Ni particle addition in Sn–8Zn–3Bi lead-free solder alloy on the microstructure, thermal and mechanical properties. J. Alloys Compd. 585, 32–39 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Laboratory of Advanced Welding Technology of Jiangsu Province, China (JSAWT-14-04). This work was also supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song-bai Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Xue, Sb., Xue, P. et al. Present status of Sn–Zn lead-free solders bearing alloying elements. J Mater Sci: Mater Electron 26, 4389–4411 (2015). https://doi.org/10.1007/s10854-014-2659-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2659-7

Keywords

Navigation