Skip to main content
Log in

Corrosion and Electrochemical Behavior of Sn-2Ag-0.5Cu Lead-Free Solders Solidified with Magnet Stirring

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, permanent magnet stirring (PMS) was applied to modify the crystallographic texture and corrosion resistance of Sn-2Ag-0.5Cu (SAC205) solders. The results indicate that PMS transforms the lamellar structure into equiaxed grains. Following the initiation corrosion process, the crystallographic texture shows a new class of grains that consists of single-crystal morphology with {111}Sn facets before applying PMS. This could result in severe corrosion of β-Sn crystals with non-uniform corrosion rate caused by the orientation effect of (111). The corrosion rate for SAC205 solder, measured by immersion tests in 3.5% NaCl solution at 25 °C, was significantly decreased from 31 to 8 mpy after applying PMS. This change in corrosion resistance of SAC205 solder can be attributed to the improved anodic and cathodic reaction activities caused by the modification of microstructure and crystallographic texture. The mechanism of pitting and sequential corrosion events is fully explained and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D.-H. Jung, A. Sharma, and J.-P. Jung, Influence of Dual Ceramic Nanomaterials on the Solderability and Interfacial Reactions Between Lead-Free Sn-Ag-Cu and a Cu Conductor, J. Alloys Compd., 2018, 743, p 300–313

    Article  Google Scholar 

  2. Z.L. Li, L.X. Cheng, G.Y. Li, J.H. Huang, and Y. Tang, Effects of Joint Size and Isothermal Aging on Interfacial IMC Growth in Sn-3.0Ag-0.5Cu-0.1TiO2 Solder Joints, J. Alloys Compd., 2017, 697, p 104–113

    Article  Google Scholar 

  3. M.A.R. Adawiyah and O.S. Azlina, Comparative Study on the Isothermal Aging of Bare Cu and ENImAg Surface Finish for Sn-Ag-Cu Solder Joints, J. Alloys Compd., 2018, 740, p 958–966

    Article  Google Scholar 

  4. J. Han, F. Guo, and J.P. Liu, Early Stages of Localized Recrystallization in Pb-Free BGA Solder Joints Subjected to Thermomechanical Stress, J. Alloys Compd., 2017, 704, p 574–584

    Article  Google Scholar 

  5. Y. Tang, S.M. Luo, W.F. Huang, Y.C. Pan, and G.Y. Li, Effects of Mn Nanoparticles on Tensile Properties of low-Ag Sn-0.3 Ag-0.7 Cu-xMn Solder Alloys and Joints, J. Alloys Compd., 2017, 719, p 365–375

    Article  Google Scholar 

  6. G. Ren, I.J. Wilding, and M.N. Collins, Alloying Influences on Low Melt Temperature SnZn and SnBi Solder Alloys for Electronic Interconnections, J. Alloys Compd., 2016, 665, p 251–260

    Article  Google Scholar 

  7. H.Y. Choi and W.J. Kim, The Improvement of Corrosion Resistance of AZ91 Magnesium Alloy Through Development of Dense and Tight Network Structure of Al-Rich a Phase by Addition of a Trace Amount of Ti, J. Alloys Compd., 2017, 696, p 736–745

    Article  Google Scholar 

  8. H.Y. Choi and W.J. Kim, Development of the Highly Corrosion Resistant AZ31 Magnesium Alloy by the Addition of a Trace Amount of Ti, J. Alloys Compd., 2016, 664, p 25–37

    Article  Google Scholar 

  9. M. Wang, J. Wang, H. Feng, and W. Ke, Effect of Ag3Sn Intermetallic Compounds on Corrosion of Sn-3.0Ag-0.5Cu Solder Under High-Temperature and High Humidity Condition, Corros. Sci., 2012, 63, p 20–28

    Article  Google Scholar 

  10. R.K. Kaushik, U. Batra, and J.D. Sharma, Aging Induced Structural and Electrochemical Corrosion Behaviour of Sn-1.0Ag-0.5Cu and Sn-3.8Ag-0.7Cu Solder Alloys, J. Alloys Compd., 2018, 745, p 446–454

    Article  Google Scholar 

  11. H.R. Kotadia, O. Mokhtari, M.P. Clode, M.A. Green, and S.H. Mannan, Intermetallic Compound Growth Suppression at High Temperature in SAC Solders with Zn Addition on Cu and Ni-P Substrates, J. Alloys Compd., 2012, 511, p 176–188

    Article  Google Scholar 

  12. M. Wang, J. Wang, and W. Ke, Corrosion Behavior of Sn-3.0Ag-0.5Cu Lead-Free Solder Joints, Microelectron. Reliab., 2017, 73, p 69–75

    Article  Google Scholar 

  13. S. Pawar, T.J.A. Slater, T.L. Burnett, X. Zhou, G.M. Scamans, Z. Fan, G.E. Thompson, and P.J. Withers, Crystallographic Effects on the Corrosion of Twin Roll Cast AZ31Mg Alloy Sheet, Acta Mater., 2017, 133, p 90–99

    Article  Google Scholar 

  14. L. Yao, J.H. Liu, S.M. Li, and M. Yu, Effects of Prior Cathodic Polarization on Crystallographic Pit Initiation on Aluminum, Corros. Sci., 2014, 80, p 12–18

    Article  Google Scholar 

  15. A.A. El-Daly and A.A. Ibrahiem, Assessment of Room-Temperature Short-Term Stress Relaxation and Strain Relaxation with Recovery in Sn-Bi Lead-Free Solders Solidified Under Rotating Magnetic Field, J. Alloys Compd., 2018, 730, p 47–56

    Article  Google Scholar 

  16. A.A. El-Daly and A.A. Ibrahiem, Influence of Rotating Magnetic Field on Solidification Microstructure and Tensile Properties of Sn-Bi Lead-Free Solders, Microelectron. Reliab., 2018, 81, p 352–361

    Article  Google Scholar 

  17. A.A. El-Daly, Structural and Morphological Characterization of Gold Nanoparticles by TEM and Digital CIS Technique, Int. J. Nanosci., 2010, 9(5), p 399–406

    Article  Google Scholar 

  18. C.W. See, M.Z. Yahaya, H. Haliman, and A.A. Mohamad, Corrosion Behavior of Corroded Sn-3.0Ag-0.5Cu Solder Alloy, Procedia Chem., 2016, 19, p 847–854

    Article  Google Scholar 

  19. A.A. El-Daly, A.M. El-Taher, and S. Gouda, Novel Bi-Containing Sn-1.5Ag-0.7Cu Lead-Free Solder Alloy with Further Enhanced Thermal Property and Strength for Mobile Products, J. Alloys Compd., 2015, 65, p 796–805

    Google Scholar 

  20. Y.J. Hwang, S.H. Hong, Y.S. Kim, H.J. Park, Y.B. Jeong, J.T. Kim, and K.B. Kim, Influence of Silicon Content on Microstructure and Mechanical Properties of Ti-Cr-Si Alloys, J. Alloys Compd., 2018, 737, p 53–57

    Article  Google Scholar 

  21. A.A. El-Daly, A.A. Ibrahiem, and A.E. Hammad, Impact of Permanent Magnet Stirring on Dendrite Growth and Elastic Properties of SneBi Alloys Revealed by Pulse Echo Overlap Method, J. Alloys Compd., 2018, 767, p 464–473

    Article  Google Scholar 

  22. W. Borchardt-Ott, Crystallography, An Introduction, 3rd ed., Springer, Heidelberg, 2011, https://doi.org/10.1007/978-3-642-16452-1

    Google Scholar 

  23. X. Zhang, X. Zhou, T. Hashimoto, and B. Liu, Localized Corrosion in AA2024-T351 Aluminium Alloy: Transition from Intergranular Corrosion to Crystallographic Pitting, Mater. Character., 2017, 130, p 230–236

    Article  Google Scholar 

  24. G.M. Treacy and C.B. Breslin, Electrochemical Studies on Single-Crystal Aluminum Surfaces, Electrochim. Acta, 1998, 43, p 1715–1720

    Article  Google Scholar 

  25. Y.-F. Gao, C.-Q. Cheng, J. Zhao, L.-H. Wang, and X.-G. Li, Electrochemical Corrosion of Sn-0.75Cu Solder Joints in NaCl Solution, Trans. Nonferrous Met. Soc. China, 2012, 22, p 977–982

    Article  Google Scholar 

  26. F. El-Taib Heakal, A.M. Fekry, and A.A. Ghoneim, Corrosion Characterization of New Tin-Silver Binary Alloys in Nitric Acid Solutions, Corros. Sci., 2008, 50, p 1618–1626

    Article  Google Scholar 

  27. S.H. Mosavat, M.H. Shariat, and M.E. Bahrololoom, Study of Corrosion Performance of Electrodeposited Nanocrystalline Zn-Ni Alloy Coatings, Corros. Sci., 2012, 59, p 81–87

    Article  Google Scholar 

  28. Z.B. Wang, H.X. Hu, Y.G. Zheng, W. Ke, and Y.X. Qiao, Comparison of the Corrosion Behavior of Pure Titanium and Its Alloys in Fluoride-Containing Sulfuric Acid, Corros. Sci., 2016, 103, p 50–65

    Article  Google Scholar 

  29. L. Onyeji, S. Mohammed, and G. Kale, Electrochemical Response of Micro-Alloyed Steel Under Potentiostatic Polarization in CO2 Saturated Brine, Corros. Sci., 2018, 138, p 146–153

    Article  Google Scholar 

  30. Z.B. Wang, H.X. Hu, C.B. Liu, and Y.G. Zheng, The Effect of Fluoride Ions on the Corrosion Behavior of Pure Titanium in 0.05 M Sulfuric Acid, Electrochim. Acta, 2014, 135, p 526–535

    Article  Google Scholar 

  31. B.W. Davisa, P.J. Morana, and P.M. Natishan, Metastable Pitting Behavior of Aluminum Single Crystals, Corros. Sci., 2000, 42, p 2187–2192

    Article  Google Scholar 

  32. P. Marcus, V. Maurice, and H.-H. Strehblow, Localized Corrosion (Pitting): A Model of Passivity Breakdown Including the Role of the Oxide Layer Nanostructure, Corros. Sci., 2008, 50, p 2698–2704

    Article  Google Scholar 

  33. D.D. Macdonald, The History of the Point Defect Model for the Passive State: A Brief Review of Film Growth Aspects, Electrochim. Acta, 2011, 56, p 1761–1772

    Article  Google Scholar 

  34. Z. Wang, C. Chen, J. Liu, G. Zhang, and K. Suganuma, Corrosion Mechanism of Zn-30Sn High-Temperature, Lead-Free Solder in Neutral NaCl Solution, Corros. Sci., 2018, 140, p 40–50

    Article  Google Scholar 

  35. Z. Szklarska-Smialowska, Mechanism of Pit Nucleation by Electrical Breakdown of the Passive Film, Corros. Sci., 2002, 44, p 1143–1149

    Article  Google Scholar 

  36. J.-C. Liu, S.W. Park, S. Nagao, M. Nogi, H. Koga, J.-S. Ma, G. Zhang, and K. Suganuma, The Role of Zn Precipitates and Cl Anions in Pitting Corrosion of Sn-Zn Solder Alloys, Corros. Sci., 2015, 92, p 263–271

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. El-Daly.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Daly, A.A., Zohdy, K.M. & Ragab, M. Corrosion and Electrochemical Behavior of Sn-2Ag-0.5Cu Lead-Free Solders Solidified with Magnet Stirring. J. of Materi Eng and Perform 28, 4680–4692 (2019). https://doi.org/10.1007/s11665-019-04227-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04227-4

Keywords

Navigation