Skip to main content
Log in

Effect of Thermal Cycling on Interfacial Microstructure and Mechanical Properties of Sn-0.3Ag-0.7Cu-(α-Al2O3) Nanoparticles/Cu Low-Ag Solder Joints

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The evolution of interfacial microstructures and mechanical properties of joints soldered with Sn-0.3Ag-0.7Cu (SAC0307) and SAC0307-0.12Al2O3 nanoparticles (NPs) subjected to thermal cycling were investigated. The joint soldered with SAC0307-0.12Al2O3 displayed an enhanced thermal cycling shear force with a ductile fracture mode when compared with the original alloy whose fracture mode showed a mixed feature of ductile and brittle. The enhanced thermal cycling shear force was attributed to a pinning effect by Al2O3 NPs on interfacial IMC grain growth. Even after 1200 thermal cycles, SAC0307-0.12Al2O3 solder was still structurally characterized by a much more refined microstructure than the non-reinforced solder alloy. Theoretical analysis on the growth of interfacial IMC layer showed that with the addition of Al2O3 NPs, the average growth coefficients of total interfacial IMCs (DT) and Cu3Sn IMCs (\( D_{{{\rm{Cu}}_{3} }} \)) were decreased from 9.2 × 10−11 cm2/h to 5.6 × 10−11 cm2/h, and from 6.9 × 10−11 cm2/h to 4.1 × 10−11 cm2/h, respectively. Hence, a much thinner IMC layer was produced at the SAC0307-0.12Al2O3/Cu interface, thus contributing to an enhanced shear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wang, H. Wei, P. He, T.S. Lin, and F.J. Lu, J. Electron. Mater. 44, 3872 (2015).

    Article  Google Scholar 

  2. G. Zeng, S.B. Xue, L.L. Gao, L. Zhang, Y.H. Hu, and Z.M. Lai, J. Alloys Compd. 509, 7152 (2011).

    Article  Google Scholar 

  3. J. Gu, Y.P. Lei, J. Lin, H.G. Fu, and Z.W. Wu, J. Electron. Mater. 46, 1396 (2017).

    Article  Google Scholar 

  4. D.A. Shnawah, M.F.M. Sabri, I.A. Badruddin, and F.X. Che, J. Electron. Mater. 41, 2631 (2012).

    Article  Google Scholar 

  5. T. Kangasvieri, O. Nousiainen, J. Putaala, R. Rautioahob, and J. Vähäkangas, Microelectron. Reliab. 46, 1335 (2006).

    Article  Google Scholar 

  6. M.A.A. Mohd Salleh, S. Mcdonald, and K. Nagita, Appl. Mech. Mater. 421, 260 (2013).

    Article  Google Scholar 

  7. J. Wu, S.B. Xue, J.W. Wang, and M.F. Wu, J. Alloys Compds 784, 471 (2019).

    Article  Google Scholar 

  8. G. Zeng, S.B. Xue, L. Zhang, W. Dai, and J.D. Luo, J. Mater. Sci. Mater. Electron. 21, 421 (2010).

    Article  Google Scholar 

  9. L. Zhang, L. Sun, Y.H. Guo, and C.W. He, J. Mater. Sci. Mater. Electron. 25, 1209 (2014).

    Article  Google Scholar 

  10. F. Gao, T. Takemoto, and H. Nishikawa, Mater. Sci. Eng. A 39, 420 (2006).

    Google Scholar 

  11. M.O. Alam, Y.C. Chan, and K.N. Tu, Chem. Mater. 15, 4340 (2003).

    Article  Google Scholar 

  12. F. Wang, X. Ma, and Y. Qian, Scr. Mater. 53, 699 (2005).

    Article  Google Scholar 

  13. C.Y. Lee, J.W. Yoon, Y.J. Kim, and S.B. Jung, Microelectron. Eng. 82, 561 (2005).

    Article  Google Scholar 

  14. Y. Tian, C. Wang, X.S. Ge, P. Liu, and D.M. Liu, Mater. Sci. Eng. B 95, 254 (2002).

    Article  Google Scholar 

  15. H. Lee, C. Kim, C. Heo, J.H. Lee, and Y.D. Kim, Microelectron. Reliab. 87, 75 (2018).

    Article  Google Scholar 

  16. J. Mittal, S.M. Kuo, Y.W. Lin, and K.L. Lin, J. Electron. Mater. 38, 2436 (2009).

    Article  Google Scholar 

  17. Q.B. Tao, L. Benabou, V.N. Le, H. Hwang, and D.B. Luu, J. Alloys Compd. 694, 892 (2017).

    Article  Google Scholar 

  18. C.M.L. Wu, D.Q. Yu, C.M.T. Law, and L. Wang, Mater. Sci. Eng. R Rep. 44, 1 (2004).

    Article  Google Scholar 

  19. L. Zhang, S.B. Xue, L.L. Gao, G. Zeng, Z. Sheng, Y. Chen, and S.L. Yu, J. Mater. Sci. Mater. Electron. 20, 685 (2009).

    Article  Google Scholar 

  20. D.X. Luo, S.B. Xue, and Z.Q. Li, J. Mater. Sci. Mater. Electron. 25, 3566 (2014).

    Article  Google Scholar 

  21. W.Q. Xing, X.Y. Yu, H. Li, L. Ma, W. Zuo, P. Dong, W.X. Wang, and M. Ding, Mater. Sci. Eng. A 678, 252 (2016).

    Article  Google Scholar 

  22. K. Mehrabi, F. Khodabakhshi, E. Zareh, A. Shahbazkhan, and A. Simchi, J. Alloys Compd. 688, 143 (2016).

    Article  Google Scholar 

  23. L. Zhang and K.N. Tu, Mater. Sci. Eng. R 82, 1 (2014).

    Article  Google Scholar 

  24. C.X. Hou, Y. Hou, Y.Q. Fan, Y.J. Zhai, Y. Wang, Z.Y. Sun, R.H. Fan, F. Dang, and J. Wang, J. Mater. Chem. A 6, 6967 (2018).

    Article  Google Scholar 

  25. N.N. Wu, C. Liu, D.M. Xu, J.R. Liu, W. Liu, Q. Shao, and Z.H. Guo, ACS Sustain. Chem. Eng. 6, 12471 (2018).

    Article  Google Scholar 

  26. C.X. Hou, Z.X. Tai, L.L. Zhao, Y.J. Zhai, Y. Hou, Y.Q. Fan, F. Dang, J. Wang, and H.K. Liu, J. Mater. Chem. A 6, 9723 (2018).

    Article  Google Scholar 

  27. N.N. Wu, D.M. Xu, Z. Wang, F.L. Wang, J.R. Liu, W. Liu, Q. Shao, H. Liu, Q. Gao, and Z.H. Guo, Carbon 145, 433 (2019).

    Article  Google Scholar 

  28. L. Sun, M.H. Chen, C.C. Wei, L. Zhang, and F. Yang, J. Mater. Sci. Mater. Electron. 21, 1 (2018).

    Google Scholar 

  29. J. Shen and Y.C. Chan, J. Alloys Compd. 477, 552 (2009).

    Article  Google Scholar 

  30. S. Cheng, C.M. Huang, and M. Pecht, Microelectron. Reliab. 75, 77 (2017).

    Article  Google Scholar 

  31. S.K. Kang, D.Y. Shih, N. Donald, W. Henderson, T. Gosselin, A. Sarkhel, N.Y.C. Goldsmith, K.J. Puttlitz, and W.K. Choi, JOM 55, 61 (2003).

    Article  Google Scholar 

  32. A.E. Hammad, Mater. Des. 52, 663 (2013).

    Article  Google Scholar 

  33. J. Wu, S.B. Xue, J.W. Wang, J.X. Wang, and S. Liu, J. Mater. Sci. Mater. Electron. 28, 10230 (2017).

    Article  Google Scholar 

  34. J. Wu, S.B. Xue, J.W. Wang, M.F. Wu, and J.H. Wang, J. Mater. Sci. Mater. Electron. 29, 7372 (2018).

    Article  Google Scholar 

  35. H.T. Chen, B. Jiang, and N. Lu, ISA Trans. 79, 127 (2018).

    Article  Google Scholar 

  36. H.T. Chen, B. Jiang, N. Lu, and W. Chen, Neurocomputing 306, 119 (2018).

    Article  Google Scholar 

  37. X. Deng, R.S. Sidhu, P. Johnson, and N. Chawla, Metall. Mater. Trans. A 36, 55 (2005).

    Article  Google Scholar 

Download references

Acknowledgments

This project is supported by National Natural Science Foundation of China (Grant No. 51675269) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songbai Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Xue, S., Wang, J. et al. Effect of Thermal Cycling on Interfacial Microstructure and Mechanical Properties of Sn-0.3Ag-0.7Cu-(α-Al2O3) Nanoparticles/Cu Low-Ag Solder Joints. J. Electron. Mater. 48, 4562–4572 (2019). https://doi.org/10.1007/s11664-019-07211-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07211-9

Keywords

Navigation