Skip to main content
Log in

Electrophoretic variation in seed proteins and interrelationships of species in the genus Oryza

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Comparative studies of two cultivated and sixteen wild species of the genus Oryza were carried out using one- and two-dimensional gel electrophoresis for variation in their seed proteins for interrelationships of these species. A number of polypeptides in the range of molecular weight 13–110 kDa were seen to vary. Under reducing conditions, polypeptides spread over the regions of mol. wt. 33–40.5, 25–27 and 19–21.5 kDa exhibited maximum variation in their patterns. Two-dimensional gel electrophoresis revealed the occurrence of disulphide-linked glutelin polypeptide pairs of mol. wt. 60, 58, 52 and 25 kDa breaking into a large and a small subunit each in the range of mol. wt. 18–40.5 and 16–25 kDa respectively in Oryza sativa. The number of such polypeptide pairs varied from 2 to 6 in different species and also in O. sativa showed variation in mol. wts. of their constituent subunits. The UPGMA dendrogram revealed that most of the Oryza species occurred in different clusters and subclusters and thus did not share very close relationships. The undisputed and closest relationship observed was that of cultivated rice O. sativa with the O. rufipogon followed by that with O. nivara. The African cultivated O. glaberrima occurring on the nearest branch of the same subcluster, thereby, supporting the phylogenetic of these species suggested in earlier studies. Eight diploid species and seven tetraploid species were included in one part of the dendrogram while the remaining two species with AA genome i.e. O. glumaepatula and O. meridionalis and one with FF i.e. O. brachyantha stood separately from these as scattered in the group of seven tetraploid species with BBCC, CCDD and HHJJ genomes. The tetraploids O. alta, O. latifolia and O. grandiglumis with CCDD genomes which occurred on the farthest part were distantly related with O. sativa. The cyanogen bromide peptide maps and two dimensional gel electrophoresis also supported the closest relationship between O. sativa and O. rufipogon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aggarwal RK, Brar DS, Huang N, Khush GS (1996) Differentiation within CCDD genome species in the genus Oryza as revealed by total genomic DNA hybridization and RFLP analysis. Rice Genet Newsl 13:54–57

    Google Scholar 

  • Aggarwal K, Brar DS, Khush GS (1997) Two new genomes in the Oryza complex identified on the basis of molecular divergence analysis using total genomic DNA hybridization. Mol Gen Gene 254:1–12

    Article  CAS  Google Scholar 

  • Aggarwal RK, Brar DS, Nandi S, Huang N, Khush GS (1999) Phylogenetic relationships among Oryza species revealed by AFLP markers. Theor Appl Genet 98:1320–1328

    Article  CAS  Google Scholar 

  • Ali ML, Sanchez PL, Yu SB, Lorieux M, Eizenga GC (2010) Chromosome segment substitution lines: a powerful tool for the introgression of valuable genes from Oryza wild species into cultivated rice (O. sativa). Rice 3:218–234

    Article  Google Scholar 

  • Andrews AT (1990) Peptide mapping. In: Hames BD, Rickwood D (eds) Gel electrophoresis of proteins. IRL Press, Oxford, pp 301–318

    Google Scholar 

  • Asghar R (2004) Inter and intra-specific variations in SDS-PAGE of total seed protein in rice (Oryza sativa L.) germplasm. Pak J Biol Sci 7:139–143

    Article  Google Scholar 

  • Bao Y, Ge S (2004) Origin and phylogeny of Oryza species with the CD genome based on multiple-gene sequence data. Plant Syst Evol 249:55–66

    Article  CAS  Google Scholar 

  • Bao Y, Zhou HF, Hong DY, Ge S (2006) Genetic diversity and evolutionary relationships of Oryza species with the B- and C-genomes as revealed by SSR markers. J Plant Biol 49:339–347

    Article  CAS  Google Scholar 

  • Brar DS, Khush GS (1997) Alien introgression in rice. Plant Mol Biol 35(1–2):35–47

    Article  PubMed  CAS  Google Scholar 

  • Brar DS, Singh K (2011) Oryza. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, cereals. Springer, Berlin, pp 321–365

    Chapter  Google Scholar 

  • Casey R (1979) Immunoaffinity chromatography as a means of purifying legumin from Pisum (pea) seeds. Biochem J 177(2):509–520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Civáň P, Craig H, Cox CJ, Brown TA (2015) Three geographically separate domestications of Asian rice. Nat Plants 1:15164

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan S, Lu B, Li Z, Tong J, Kong J, Yao W, Li S, Zhu Y (2007) Phylogenetic analysis of AA-genome Oryza species (Poaceae) based on chloroplast, mitochondrial, and nuclear DNA sequences. Biochem Genet 45(1–2):113–129

    Article  PubMed  CAS  Google Scholar 

  • Federici MT, Shcherban AB, Capdevielle F, Francis M, Vaughan DA (2002) Analysis of genetic diversity in the Oryza officinalis complex. J Biotechnol 5:173–181

    Google Scholar 

  • Galili G, Feldmen M (1984) Intergenomic suppression of endosperm protein genes in common wheat. Can J Gene Cytol 26:651–656

    Article  CAS  Google Scholar 

  • Ge S, Sang T, Lu BR, Hong DY (2001) Phylogeny of the genus Oryza as revealed by molecular approaches. In: Khush GS, Brar DS, Hardy B (eds) Rice genetics IV. Proceedings of the fourth international rice genetics symposium. Los Banos, The Philippines, IRRI, pp 89–105

  • Glazmann JC (1987) Isozymes and classification of Asian rice varieties. Theor Appl Genet 74:21–30

    Article  Google Scholar 

  • Hilu KW, Sharova LV (2002) Evolutionary implications of substitution pattens in prolamin genes of Oryza glaberrima (African rice, Poaceae) and related species. Am J Bot 89(2):211–219

    Article  PubMed  CAS  Google Scholar 

  • Huang X et al (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497–501

    Article  PubMed  CAS  Google Scholar 

  • Ishii T, Nakano T, Maeda H, Kamijima O (1996) Phylogenetic relationships in A-genome species of rice as revealed by RAPD analysis. Gene Genet Syst 71:195–201

    Article  CAS  Google Scholar 

  • Ishii T, Xu Y, McCouch SR (2001) Nuclear- and chloroplast-microsatellite variation in A-genome species of rice. Genome 44(4):658–666

    Article  PubMed  CAS  Google Scholar 

  • Jaccard P (1908) Nouvelles researches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270

    Google Scholar 

  • Jena KK (2010) The species of the genus Oryza and transfer of useful genes from wild species into cultivated rice, O. sativa. Breed Sci 60:518–523

    Article  Google Scholar 

  • Jena KK, Kochert G (1991) Restriction fragment length polymorphism analysis of CCDD genome species of the genus Oryza L. Plant Mol Biol 16:831–839

    Article  PubMed  CAS  Google Scholar 

  • Jiang C, Cheng Z, Zhang C, Yu T, Zhang Q, Shen JQ, Huang X (2014) Proteomic analysis of seed storage proteins in wild rice species of the Oryza genus. Prot Sci 12:51

    Article  CAS  Google Scholar 

  • Jin L, Lu Y, Xiao P, Sun M, Corke H, Bao JS (2010) Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theor Appl Genet 121:475–487

    Article  PubMed  Google Scholar 

  • Jugran A, Bhatt ID, Rawal RS (2010) Characterization of agro-diversity by seed storage protein electrophoresis: focus on rice germplasm from Uttarakhand Himalaya. India. Rice Sci 17(2):122–128

    Article  Google Scholar 

  • Juliano BO (1990) Rice grain quality: problem and challenges. CFW 35(2):245–253

    Google Scholar 

  • Kagawa H, Hirano H, Kikuchi F (1988) Variation of glutelin seed storage protein in rice. Jpn J Breed 38:327–332

    Article  CAS  Google Scholar 

  • Katayama T (1982) Cytogenetical studies on the genus Oryza. XIII. Relationship between the genome E and D. Jpn J Genet 57:613–621

    Article  Google Scholar 

  • Katsube-Tanaka T, Duldulao JB, Kimura Y, Iida S, Yamaguchi T, Nakano J, Utsumi S (2004) The two subfamilies of rice glutelin differ in both primary and higher-order structures. Biochim Biophys Acta 1699:95–102

    Article  PubMed  CAS  Google Scholar 

  • Khan N, Katsube-Tanaka T, Iida S, Yamaguchi T, Nakano J, Tsujimoto H (2008) Identification and variation of glutelin α polypeptides in the genus Oryza assessed by two dimensional electrophoresis and step-by-step immunodetection. J Agric Food Chem 56:4955–4961

    Article  PubMed  CAS  Google Scholar 

  • Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34

    Article  PubMed  CAS  Google Scholar 

  • Krishnan HB, White AJ (1995) Morphometric analysis of rice seed protein bodies. Plant Physiol 109:1491–1495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumamaru T, Satoh H, Iwata N, Omura T, Omura T, Ogawa M, Tanaka K (1988) Mutants for rice storage proteins I: screening of mutants for rice storage proteins of protein bodies in the starchy endosperm. Theor Appl Genet 76:11–16

    Article  PubMed  CAS  Google Scholar 

  • Ladizinsky G, Alder A (1976) Genetic relationships among the annual species of Cicer L. Theor Appl Genet 48:197–203

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–688

    Article  CAS  Google Scholar 

  • Lee YJ, Thomson MJ, Chin JH (2014) Application of indicajaponica single-nucleotide polymorphism markers for diversity analysis of Oryza AA genome species. Plant Genet Resour 12:36–40

    Article  Google Scholar 

  • Lu BR (1999) Taxonomy of the genus Oryza (Poaceae): historical perspective and current status. Int Rice Res Notes 24:4–8

    Google Scholar 

  • Lu BR, Naredo MBE, Juliano AB, Jackson MT (2000) Preliminary studies on taxonomy and biosystematics of the AA-genome. Oryza species (Poaceae). In: Jacobs SWL, Everett J (eds) Grasses, systematics & evolution. CSIRO, Melbourne, pp 51–58

    Google Scholar 

  • Luthra R, Matta NK (1990) Seed proteins of the family Rosaceae: characterization studies and homologies. J Ind Bot Soc 69:321–324

    CAS  Google Scholar 

  • Matta NK (1981) Structural and genetical studies on legumin of Pisum sativum L. and Vicia faba L. Ph.D. Thesis, University of Durham, UK

  • Matta NK, Gatehouse JA, Boulter D (1981a) The structure of legumin of Vicia faba a reappraisal. J Exp Bot 32(1):183–197

    Article  CAS  Google Scholar 

  • Matta NK, Gatehouse JA, Boulter D (1981b) Molecular and subunit heterogeneity of legumin of Pisum sativum (garden pea)—A multidimensional gel-electrophoretic study. J Exp Bot 32(131):1295–1307

    Article  CAS  Google Scholar 

  • McIntyre CL, Winberg B, Houchins K, Appels R, Baum BR (1992) Relationships between Oryza species (Poaceae) based on 5S DNA sequences. Plant Syst Evol 183:249–264

    Article  CAS  Google Scholar 

  • Morishima H (2001) Evolution and domestication of rice. Rice Genetics IV, IRRI, Philippines, pp 63–78

    Google Scholar 

  • Morishima HK, Oka HI (1960) The pattern of interspecific variation in the genus Oryza: its quantitative representation by statistical methods. Evolution 14:153–165

    Google Scholar 

  • Nair NV, Nair S, Sreenivasan TV, Mohan M (1999) Analysis of genetic diversity and phylogeny in Saccharum and related genera using RAPD markers. Genet Resour Crop Evol 46:73–79

    Article  Google Scholar 

  • Nayar NM (1973) Origin and cytogenetics of rice. Adv Genet 17:153–292

    Google Scholar 

  • Ogawa M, Kumamaru T, Satoh H, Iwata N, Omura T, Kasai Z, Tanaka K (1987) Purification of protein body-I of rice seed and its polypeptide composition. Plant Cell Physiol 28:1517–1527

    CAS  Google Scholar 

  • Ohmido N, Fukui K (1997) Visual verification of close disposition between a rice A genome-specific DNA sequence (TrsA) and the telomere sequence. Plant Mol Biol 35:963–968

    Article  PubMed  CAS  Google Scholar 

  • Park KC, Kim NH, Kim NS (2003) Genetic variations of AA genome Oryza species measured by MITE-AFLP. Theor Appl Genet 107:203–209

    Article  PubMed  CAS  Google Scholar 

  • Ren FG, Lu BR, Li SQ, Huang JY, Zhu YG (2003) A comparative study of genetic relationships among the AA-genome Oryza species using RAPD and SSR markers. Theor Appl Genet 108:113–120

    Article  PubMed  CAS  Google Scholar 

  • Sarkar R, Bose S (1984) Electrophoretic characterization of rice varieties using single seed (salt soluble) proteins. Theor Appl Genet 68(5):415–419

    Article  PubMed  CAS  Google Scholar 

  • Sarkar R, Raina SN (1992) Assessment of genome relationships in the genus Oryza L. based on seed-protein profile analysis. Theor Appl Genet 85:127–132

    Article  PubMed  CAS  Google Scholar 

  • Second G (1982) Origin of the genetic diversity of cultivated rice: study of the polymorphism scored at 40 isozyme loci. Jpn J Genet 57:25–57

    Article  Google Scholar 

  • Second G (1985) Evolutionary relationships in the Sativa group of Oryza based on isozyme data. Genet Select Evol 17:89–114

    Article  CAS  Google Scholar 

  • Second G, Wang ZY (1992) Mitochondrial DNA RFLP in genus Oryza and cultivated rice. Genet Resour Crop Evol 39:125–140

    Google Scholar 

  • Sharma SD (2003) Species of the genus Oryza and their interrelationships. In: Nanda JS, Sharma SD (eds) Monograph on the genus Oryza. Science Publishers, Enfield, pp 73–111

    Google Scholar 

  • Siddiqui SU, Kumamaru T, Satoh H (2010) Pakistan rice genetic resources—III: SDS-PAGE diversity profile of glutelins seed storage proteins. Pak J Bot 42(4):2523–2530

    CAS  Google Scholar 

  • Singh NP, Matta NK (2008) Variation studies on seed storage proteins and phylogenetics of the genus Cucumis. Plant Syst Evol 275:209–218

    Article  CAS  Google Scholar 

  • Singh NP, Matta NK (2010) Levels of seed proteins in Citrullus and Praecitrullus accessions. Plant Syst Evol 290:47–56

    Article  CAS  Google Scholar 

  • Singh A, Matta NK (2011) Disulphide linkages occur in many polypeptides of rice protein fractions: a two- dimensional gel electrophoretic study. Rice Sci 18:86–94

    Article  Google Scholar 

  • Sotowa M, Ootsuka K, Kobayashi Y, Hao Y, Tanaka K, Ichitani K, Flowers JM, Purugganan MD, Nakamura I, Sato Y (2013) Molecular relationships between Australian annual wild rice, Oryza meridionalis, and two related perennial forms. Rice 6:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland

  • Uppal K (1995) Studies on major seed storage proteins of Vigna mungo L. Hepper. Ph.D. Thesis. Kurukshetra University, Kurukshetra

  • Vaughan DA (1994) The wild relatives of rice. International Rice Research Institute, Los Banos

    Google Scholar 

  • Vaughan DA, Morishima H (2003) Biosystematics of the genus Oryza. Chapter 1.2. In: Smith WC, Didley RH (eds) Rice. Origin, history, technology and production. Wiley, Hoboken

    Google Scholar 

  • Vaughan DA, Morishima H, Kadowaki K (2003) Diversity in the Oryza genus. Curr Opin Plant Biol 6:139–146

    Article  PubMed  CAS  Google Scholar 

  • Villareal RM, Juliano BO (1978) Properties of glutelin of mature and developing rice grains. Phytochemistry 17:177–182

    Article  CAS  Google Scholar 

  • Vithyashini L, Wickramasinghe HAM (2015) Genetic diversity of seed storage proteins of rice (Oryza sativa L.) varieties in Sri Lanka. Trop Agric Res 27(1):49–58

    Article  Google Scholar 

  • Wambugu PW, Brozynska M, Furtado A, Waters DL, Henry RJ (2015) Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences. Sci Rep. https://doi.org/10.1038/srep13957

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang ZY, Second G, Tanksley SD (1992) Polymorphism and phylogenetic relationships among species in the genus Oryza as determined by analysis of nuclear RFLPs. Theor Appl Genet 83(5):565–581

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Ding Z, Liu W, Pan J, Li C, Ge S, Zhang D (2009) Polyploid evolution in Oryza officinalis complex of the genus Oryza. BMC Evol Biol 9:250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang MH et al (2014) The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat Genet 46:982–988

    Article  PubMed  CAS  Google Scholar 

  • Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from wild rice relative, Oryza rufipogon. Genetics 150:899–909

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yamagata H, Sugimoto T, Tanaka K, Kasai Z (1982) Biosynthesis of storage proteins in developing rice seeds. Plant Physiol 70:1094–1100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin H, Akimoto M, Kaewcheenchai R, Sotowa M, Ishii T, Ishikawa R (2015) Inconsistent diversities between nuclear and plastid genomes of AA genome species in the genus Oryza. Gene Genet Syst 90:269–281

    Article  CAS  Google Scholar 

  • Zang LL, Zou XH, Zhang FM, Yang Z, Ge S (2011) Phylogeny and species delimitation of the C-genome diploid species in Oryza. J Syst Evol 49(5):386–395

    Article  Google Scholar 

  • Zhang QJ et al (2014) Rapid diversification of five Oryza AA genomes associated with rice adaptation. PNAS. https://doi.org/10.1073/pnas.1418307111

    Article  PubMed  Google Scholar 

  • Zhu Q, Ge S (2005) Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes. New Phytol 167:249–265

    Article  PubMed  CAS  Google Scholar 

  • Zou XH, Du YS, Tang L, Xu XW, Doyle JJ, Sang T, Ge S (2015) Multiple origins of BBCC allopolyploid species in the rice genus (Oryza). Sci Rep 5:14876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Kind supply of rice seeds from International Rice Research Institute, Philippines and Central Rice Research Institute (CRRI), Cuttack, India is gratefully acknowledged; AS is grateful to DAE, Trombay, India for providing financial assistance in form of Research Associateship. YK is grateful to Kurukshetra University, Kurukshetra for financial support in the form of a University Research Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvinder Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Kumar, Y. & Matta, N.K. Electrophoretic variation in seed proteins and interrelationships of species in the genus Oryza. Genet Resour Crop Evol 65, 1915–1936 (2018). https://doi.org/10.1007/s10722-018-0665-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-018-0665-y

Keywords

Navigation