Skip to main content
Log in

Levels of seed proteins in Citrullus and Praecitrullus accessions

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Variation among 17 accessions of Citrullus lanatus from different geographic regions and interspecific relationships of six taxa of Citrullus and Praecitrullus were studied using electrophoretic patterns of their seed storage proteins. Globulins, the salt soluble proteins, represented the major fraction with their proportion varying between 56.6% and 67.0%. These were followed by albumins (16.6–20.8%) and glutelins (13.5–18.5%) with prolamins as the lowest (2.2–4.1%) of the four fractions. Two-dimensional gel electrophoresis under nonreducing conditions in the first dimension and reducing conditions in the second revealed disulphide-bonded subunit pairs of molecular weight 53, 52, 50 and 41 kDa, unlike the single subunit pair generally reported in different cucurbits, each consisting of a large and a small subunit. In the UPGMA dendrogram based on polypeptide patterns, the occurrence of C. lanatus var. lanatus, C. lanatus var. citroides and C. lanatus accession PI 482318 in one subcluster suggested that phylogenetically C. lanatus var. citroides and C. lanatus var. lanatus are closely related. The recently described annual wild species, Citrullus rehmii, occurred independently nearest to the subcluster of these cultivated and wild taxa. Citrullus colocynthis, the perennial wild species occurred farther from this cluster showing relatively more genetic distance from the watermelons. Praecitrullus fistulosus was outclustered and appeared genetically distant from all the Citrullus taxa; this supported its placement in a separate genus unlike its nomenclature as a botanical variety of watermelon or as a separate species of Citrullus proposed in certain earlier studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anghel I (1969) Studies on the cytology and evolution of the Citrullus vulgaris. Commun Bot 11:49–55

    Google Scholar 

  • Blagrove RJ, Lilley GG (1980) Characterization of cucurbitin from various species of the Cucurbitaceae. Eur J Biochem 103:577–584

    Article  CAS  PubMed  Google Scholar 

  • Boulter D, Croy RRD (1997) The structure and biosynthesis of legume seed storage proteins: a biological solution to the storage of nitrogen in seeds. Adv Bot Res 27:2–84

    Google Scholar 

  • Boulter D, Derbyshire E (1978) The general properties, classification and distribution of plant proteins. In: Norten G (ed) Plant proteins. Butterworth, London, pp 3–24

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Dane F, Lang P (2004) Comparative analysis of cpDNA variability in wild and cultivated Citrullus species: implications for evolution of watermelon. Am J Bot 91:1922–1929

    Article  CAS  Google Scholar 

  • Dane F, Liu J (2007) Diversity and origin of cultivated and citron type watermelon (Citrullus lanatus). Genet Resour Crop Evol 54:1255–1265

    Article  CAS  Google Scholar 

  • De Winter B (1990) A new species of Citrullus (Benincaseae) from the Namib desert, Namibia. Bothalia 20:209–211

    Google Scholar 

  • Derbyshire E, Wright DJ, Boulter D (1976) Legumin and vicilin storage proteins of legume seeds. Phytochemistry 15:3–24

    Article  CAS  Google Scholar 

  • El-Adawy TA, Taha KM (2001) Characteristics and composition of watermelon, pumpkin, and paprika seed oils and flours. J Agric Food Chem 49:1253–1259

    Article  CAS  PubMed  Google Scholar 

  • El-Khalifa AO, El-Tinay AH (1994) Effect of fermentation on protein fractions and tannin content of low and high tannin cultivars of sorghum. Food Chem 49:265–269

    Article  CAS  Google Scholar 

  • Esquinaz-Alcazar JT, Gulick PJ (1983) Genetic resources of Cucurbitaceae – a global report. International Board for Plant Genetic Resources, Rome, Italy

  • Güner N, Wehner T (2004) The genes of watermelon. Hortic Sci 39:1175–1182

    Google Scholar 

  • Gusmini G, Wehner TC, Jarret RL (2004) Inheritance of Egusi seed type in watermelon. J Hered 95(3):268–270

    Article  CAS  PubMed  Google Scholar 

  • Hepper FN (1990) Pharaoh’s flowers. The botanical treasures of Tutankhamum. Royal Botanic Gardens, Kew, London

    Google Scholar 

  • Higgins TJ V (1984) Synthesis and regulation of major proteins in seeds. Annu Rev Plant Physiol 35:191–221

    Article  CAS  Google Scholar 

  • Huh YC, Solmaz I, Sari N (2008) Morphological characterization of Korean and Turkish watermelon germplasm. In: Pitrat M (ed) Cucurbitaceae 2008, Proceedings of the IXth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae, 21–24 May, INRA, Avignon (France)

  • Jarret RL, Newman M (2000) Phylogenetic relationships among species of Citrullus and the placement of C. rehmii De Winter as determined by internal transcribed spacer (ITS) sequence heterogeneity. Genet Resour Crop Evol 47(2):215–222

    Article  Google Scholar 

  • Khoshoo TN, Vij P (1963) Biosystematics of Citrullus vulgaris var. fistulosus. Caryologia 16:541–552

    Google Scholar 

  • Kumar S, Matta NK (1997) Status of mungbean protein fractions under changing nutrient regime. J Plant Biochem Biotechnol 6:41–43

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–688

    Article  CAS  PubMed  Google Scholar 

  • Lazos E (1986) Nutritional, fatty acid and oil characteristics of pumpkin and melon seeds. J Food Sci 51:1382–1383

    Article  CAS  Google Scholar 

  • Levi A, Thomas CE, Keinath AP, Wehner TC (2001) Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Genet Resour Crop Evol 48:559–566

    Article  Google Scholar 

  • Ma K, Zhang X, Wang M (1990) Nutrients in seeds of edible watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai). Cucur Genet Co-op Rpt 13:43

  • Matta NK (1981) Structural and genetical studies on legumin of Pisum sativum L. and Vicia faba L. Ph.D Thesis, University of Durham, UK

  • Matta NK, Gatehouse JA, Boulter D (1981) The structure of legumin of Vicia faba a reappraisal. J Exp Bot 32(1):183–197

    Article  CAS  Google Scholar 

  • Maynard DN (ed) (2001) Watermelons, characteristics, production, and marketing. ASHS Press, Alexandria, pp 1–227

  • Navot N, Zamir D (1987) Isozyme and seed protein phylogeny of the genus Citrullus (Cucurbitaceae). Plant Syst Evol 156(1–2):61–68

    Article  Google Scholar 

  • Oke OL (1965) Nutritive value of Nigerian watermelon. Nature 207:197

    Article  Google Scholar 

  • Oyolu C (1977) A quantitative and qualitative study of seed types in egusi (Colocynthis citrullus L.). Trop Sci 19:55–62

    CAS  Google Scholar 

  • Pangalo KI (1944) A new genus of the Cucurbitaceae. Praecitrullus, an ancestor of the contemporary watermelon (Citrullus Forsk.). Bot Zurr S S S R 29:200–204

    Google Scholar 

  • Panozzo JF, Eagles HA, Wootton M (2001) Changes in protein composition during grain development in wheat. Aust J Agric Res 52:485–493

    Article  CAS  Google Scholar 

  • Rimando AM, Perkins-Veazie PM (2005) Determination of citrulline in watermelon rind. J Chromatogr A 1078:196–200

    Article  CAS  PubMed  Google Scholar 

  • Sammour R, Mustafa AE-Z, Badr S, Tahr W (2007) Genetic variations in accessions of Lathyrus sativus L. Acta Bot Croat 66(1):1–13

    CAS  Google Scholar 

  • Shastry M, John E (1991) Biochemical changes and in vitro protein digestibility of the endosperm of germinating Dolichos lablab. J Sci Food Agric 55:529–538

    Article  CAS  Google Scholar 

  • Shimotsuma M (1960) Cytogenetical studies in the genus Citrullus. IV. Intra and inter-specific hybrids between C. colocynthis Schr. and C. vulgaris Schrad. Jpn J Gen 35:303–312

    Article  Google Scholar 

  • Shimotsuma M (1961) Chromosome number of Citrullus species. Chromosome Information Service, Tokyo 2:14–16

    Google Scholar 

  • Singh NP (2006) Studies on seed storage proteins of some important cucurbits. Ph.D Thesis, Kurukshetra University, India

  • Singh NP, Matta NK (2008) Variation studies on seed storage proteins and phylogenetics of the genus Cucumis. Plant Syst Evol 275:209–218

    Article  CAS  Google Scholar 

  • Sood A, Chandana M, Matta NK (1995) Electrophoretic studies on seed proteins of the genus Lathyrus. J Plant Biochem Biotechnol 4:121–124

    CAS  Google Scholar 

  • Staub JE, Fredrick L, Marty TL (1987) Electrophoretic variation in cross-compatible wild diploid species of Cucumis. Canad J Bot 65:792–798

    Article  CAS  Google Scholar 

  • Sujatha VS, Seshadri VS (1989) Taxonomic position of round melon (Praecitrullus fistulosus) Cucur. Gen Co-op Rep 12:86

    Google Scholar 

  • Teotia MS, Ramakrishna P (1984) Chemistry and technology of melon seeds. J Food Sci Technol 21(5):332–340

    CAS  Google Scholar 

  • Trivedi RN, Roy RP (1970) Cytological studies in Cucumis and Citrullus. Cytologia 35:561–569

    Google Scholar 

  • Van Zeist W (1983) Fruits in foundation deposits of two temples. J Arch Sci 10:351–354

    Article  Google Scholar 

  • Whitaker TW (1933) Cytogenetical and phylogenetic studies in the Cucurbitaceae. Bot Gaz 93:780–790

    Article  Google Scholar 

  • Whitaker TW, Bemis WB (1976) Cucurbits. In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 64–69

    Google Scholar 

  • Whitaker TW, Davis GN (1962) Cucurbits. In: Polunin N (ed) World crops books. Interscience, New York, pp 157–159

    Google Scholar 

  • Younis YMH, Ghirmay S, Al-Shihry SS (2000) African Cucurbita pepo L.: properties of seed and variability in fatty acid composition of seed oil. Phytochemistry 54:71–75

    Article  CAS  PubMed  Google Scholar 

  • Zhuang FY, Chen JF, Staub JE, Qian CT (2004) Assesment of genetic relationships in Cucumis species by SSR and RAPD analysis. Plant Breed 123:167–172

    Article  CAS  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

The authors thank the Plant Genetic Resources Conservation Unit (PGRCU) of USDA, at Agriculture Research Station, Griffin, GA, for the kind supply of germplasm of different Citrullus taxa and P. fistulosus. Financial support in the form of a University Research Scholarship to the first author from Kurukshetra University, Kurukshetra, is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Matta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, N.P., Matta, N.K. Levels of seed proteins in Citrullus and Praecitrullus accessions. Plant Syst Evol 290, 47–56 (2010). https://doi.org/10.1007/s00606-010-0347-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-010-0347-5

Keywords

Navigation