Skip to main content
Log in

Biological activities of the essential oil from the leaves of Lantana montevidensis (Spreng) Briq. in mice

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

This work aimed to analyze the chemical composition and evaluate the anti-inflammatory and antinociceptive properties of the essential oil obtained from the leaves of Lantana montevidensis (OEFLM) in mice. The chemical composition of the OEFLM was analyzed by GC–MS, and its effects on the central nervous system were determined by the open field and rotarod tests. The antinociceptive and anti-inflammatory screenings were conducted using the formalin test, as well as the acetic acid-induced abdominal contortion assay. The antinociceptive activity was assessed by the tail-flick and hot plate tests. The systemic anti-inflammatory activity was determined using models of paw edema induced by carrageenan, dextran, histamine, or arachidonic acid. The effects of the essential oil on vascular permeability and granuloma formation were also investigated. The chemical composition of the OEFLM revealed the presence of valencene (17.93%), bicyclogermacrene (16.35%), trans-caryophyllene (12.84%) and germacrene D (12.18%). The administration of OEFLM at the dose of 2000 mg/Kg caused no evident toxicity. While OEFLM (25, 50, 100, and 200 mg/kg) did not present significant anxiolytic-loke or sedative effects, it showed promising antinociceptive and anti-inflammatory activities. The results of this study indicate that the OEFLM has analgesic and anti-inflammatory activities in animal models by inhibiting acute and chronic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

ANOVA:

Analysis of variance

CEUA:

Commission of Ethics in Research in Animals

COX:

Cyclooxygenase

CNS:

Central nervous system

DZP:

Diazepam

GC–MS:

Gas chromatography-mass spectrometry

HCDAL:

Herbarium Caririense Dárdano de Andrade Lima

IL-1β:

Interleukin-1 β

IL-8:

Interleukin-8

LOX:

Lipoxygenase LTB4, leukotriene B4

MPO:

Myeloperoxidase

OECD:

Organization for Economic Cooperation and Development

OEFLM:

Essential oil of leaves of Lantana montevidensis

PAF:

Platelet activating factor

PBS:

Phosphate buffered saline

PGE2 :

Prostaglandin E2

p.i.:

Per os (intraperitoneal administration)

p.o.:

Per os (oral administration)

TNF-α:

Tumor necrosis factors alpha

SEM:

Standard error of the mean

URCA:

Regional University of Cariri

References

  • Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry. Allured publishing corporation.

  • Adedayo, L. D., Ojo, A. O., Awobajo, F. O., Adeboye, B. A., Adebisi, J. A., & Bankole, T. J., et al. (2019). Methanol extract of Cola nitida ameliorates inflammation and nociception in experimental animals. Neurobiology of Pain , 5, 100027. https://doi.org/10.1016/j.ynpai.2019.100027.

    Article  Google Scholar 

  • Bannon, A., & Malmberg, A. (2007). Models of Nociception: Hot-Plate, Tail-Flick, and Formalin Tests in Rodents, Current protocols in neuroscience/editorial board, Jacqueline N. Crawley ... [et al.]. https://doi.org/10.1002/0471142301.ns0809s41

  • Benly, P. (2015). Role of histamine in acute inflammation. Journal of Pharmaceutical Sciences and Research, 7, 373.

    CAS  Google Scholar 

  • Bonjardim, L. R., Cunha, E. S., Guimarães, A. G., Santana, M. F., Oliveira, M. G. B., & Serafini, M. R., et al. (2012). Evaluation of the anti-inflammatory and antinociceptive properties of p-cymene in mice. Zeitschrift für Naturforsch. C, 67, 15–21.

    Article  CAS  Google Scholar 

  • Bradley, P. P., Christensen, R. D., & Rothstein, G. (1982). Cellular and extracellular myeloperoxidase in pyogenic inflammation. Blood, 60, 618–622.

    Article  CAS  Google Scholar 

  • Brito da Matta, C. B., De Souza, É. T., De Queiroz, A. C., De Lira, D. P., De Araújo, M. V., Cavalcante-Silva, L. H. A., et al. (2011). Antinociceptive and anti-inflammatory activity from algae of the genus Caulerpa. Marine Drugs, 9, 307–318.

    Article  CAS  Google Scholar 

  • Bulani, V., Biyani, K., Kale, R., Joshi, U., Charhate, K., Kumar, D., & Pagore, R. (2011). Inhibitory effect of Calotropis gigantea extract on ovalbumin-induced airway inflammation and Arachidonic acid induced inflammation in a murine model of asthma. IInternational Journal of Biomedical Science, 1, 19–25.

    Google Scholar 

  • Chowdhury, J. U., Nandi, N. C., & Bhuiyan, M. N. I. (2007). Chemical composition of leaf essential oil of Lantana camara L. from Bangladesh. Bangladesh Journal of Botany, 36, 193–194.

    Article  Google Scholar 

  • Costa, J. G. M., de Sousa, E. O., Rodrigues, F. F. G., de Lima, S. G., & Braz-Filho, R. (2009). Composição química e avaliação das atividades antibacteriana e de toxicidade dos óleos essenciais de Lantana camara L. e Lantana sp. Brazilian Journal of Pharmacognosy, 19, 710–714.

    Article  Google Scholar 

  • Coura, C. O., de Araújo, I. W. F., Vanderlei, E. S. O., Rodrigues, J. A. G., Quinderé, A. L. G., & Fontes, B. P., et al. (2012). Antinociceptive and anti-inflammatory activities of sulphated polysaccharides from the red seaweed Gracilaria cornea. Basic & Clinical Pharmacology & Toxicology, 110, 335–341.

    Article  CAS  Google Scholar 

  • Cruz, M.P., Andrade, C.M.F., Silva, K.O., de Souza, E.P., Yatsuda, R., Marques, L.M., David, J.P., David, J.M., Napimoga, M.H., & Clemente-Napimoga, J.T. (2016). Antinoceptive and anti-inflammatory activities of the ethanolic extract, fractions and flavones isolated from Mimosa tenuiflora (Willd.) Poir (Leguminosae). PLoS One 11, e0150839.

  • de Aguiar, U.N., de Lima, S.G., Rocha, M. dos S., Citó, A.M. das G.L., Sousa, A.J.P., Silva, R.M., Silva, I.S.A., da Costa, J.G.M., 2015. Chemical composition and modulation of antibiotic activity of essential oil of Lantana caatingensis M. (Verbenaceae). Industrial Crops and Products 74, 165–170. https://doi.org/10.1016/j.indcrop.2015.04.011

  • de Brito, T. V., da Prudêncio, R., & S., Sales, A.B., Vieira Júnior, F. das C., Candeira, S.J.N., Franco, Á.X., Aragão, K.S., Ribeiro, R. de A., Ponte de Souza, M.H.L., & Chaves, L. de S. (2013). Anti-inflammatory effect of a sulphated polysaccharide fraction extracted from the red algae H ypnea musciformis via the suppression of neutrophil migration by the nitric oxide signalling pathway. Journal of Pharmacy and Pharmacology, 65, 724–733.

    Article  CAS  Google Scholar 

  • de Moraes Pultrini, A., Galindo, L. A., & Costa, M. (2006). Effects of the essential oil from Citrus aurantium L. in experimental anxiety models in mice. Life Sciences, 78, 1720–1725.

    Article  CAS  Google Scholar 

  • de Morais Oliveira-Tintino, C. D., Pessoa, R. T., Fernandes, M. N. M., Alcantara, I. S., da Silva, B. A. F., & de Oliveira, M. R. C., et al. (2018). Anti-inflammatory and anti-edematogenic action of the Croton campestris A. St.-Hil (Euphorbiaceae) essential oil and the compound β-caryophyllene in in vivo models. Phytomedicine, 41, 82–95.

    Article  CAS  Google Scholar 

  • De Oliveira, M. R. C., Barros, L. M., Duarte, A. E., De Lima Silva, M. G., Da Silva, B. A. F., & Pereira Bezerra, A. O. B., et al. (2019). Gc-ms chemical characterization and in vitro evaluation of antioxidant and toxic effects using drosophila melanogaster model of the essential oil of lantana montevidensis (Spreng) briq. Medicine,. https://doi.org/10.3390/medicina55050194.

    Article  Google Scholar 

  • De Sousa, E. O., Lima, A. D. S., Lopes, S. G., Costa-Junior, L. M., & Da Costa, J. G. M. (2020). Chemical composition and acaricidal activity of Lantana camara L. and Lantana montevidensis Briq. essential oils on the tick Rhipicephalus microplus. Journal of Essential Oil Research, 32, 316–322. https://doi.org/10.1080/10412905.2020.1752320.

    Article  CAS  Google Scholar 

  • De Sousa, E. O., Rodrigues, F. F. G., Campos, A. R., Lima, S. G., & Da Costa, J. G. M. (2013). Chemical composition and synergistic interaction between aminoglycosides antibiotics and essential oil of Lantana montevidensis Briq. Natural Product Research, 27, 942–945. https://doi.org/10.1080/14786419.2012.678351.

    Article  CAS  Google Scholar 

  • Dennis, E. A., & Norris, P. C. (2015). Eicosanoid storm in infection and inflammation. Nature Reviews Immunology, 15, 511.

    Article  CAS  Google Scholar 

  • Denny, C., Melo, P. S., Franchin, M., Massarioli, A. P., Bergamaschi, K. B., de Alencar, S. M., & Rosalen, P. L. (2013). Guava pomace: a new source of anti-inflammatory and analgesic bioactives. BMC Complementary Medicine, 13, 235.

    Article  CAS  Google Scholar 

  • DiMartino, M. J., Campbell, G. K., Wolff, C. E., & Hanna, N. (1987). The pharmacology of arachidonic acid-induced rat paw edema. Agents and Actions, 21, 303–305.

    Article  CAS  Google Scholar 

  • dos Santos, D. A., de Fukui, M., & J., Nanayakkara, N.P.D., Khan, S.I., Sousa, J.P.B., Bastos, J.K., Andrade, S.F., da Silva Filho, A.A., & Quintão, N.L.M., . (2010). Anti-inflammatory and antinociceptive effects of Baccharis dracunculifolia DC (Asteraceae) in different experimental models. Journal of Ethnopharmacology, 127, 543–550.

    Article  Google Scholar 

  • Drexler, S. K., Kong, P. L., Wales, J., & Foxwell, B. M. (2008). Cell signalling in macrophages, the principal innate immune effector cells of rheumatoid arthritis. Arthritis Research and Therapy, 10, 216.

    Article  CAS  Google Scholar 

  • Dunham, N. W., & Miya, T. S. (1957). A note on a simple apparatus for detecting neurological deficit in rats and mice. Journal of the American Pharmaceutical Association, 46, 208–209.

    Article  CAS  Google Scholar 

  • Facanali, R., Campos, M. M. S., Pocius, O., Ming, L. C., Soares-Scott, M. D., & Marques, M. O. M. (2009). Reproductive biology of Ocimum selloi Benth. populations. Biologia reprodutiva de populações de Ocimum selloi Benth, 11, 141–146.

    Google Scholar 

  • Gehlen, M. L., Moreira, H., Moreira, L., Sabag, F. P., & Repka, J. C. D. (2004). Avaliação espectrofotométrica do azul de Evans na reação inflamatória da córnea: estudo experimental em coelhos. Arquivos brasileiros de oftalmologia, 67, 219–225.

    Article  Google Scholar 

  • Gidwani, B. K., Bhargava, S., Rao, S. P., Majoomdar, A., Pawar, D. P., & Alaspure, R. N. (2009). Analgesic, anti-inflammatory and antihemorrhoidal activity of aqueous extract of Lantana camara Linn. Research Journal of Pharmacy and Technology, 2, 378–381.

    Google Scholar 

  • Guideline, O. O. (2001). 425: acute oral toxicity—up-and-down procedure. OECD GuidelinesTesting Chemical, 2, 12–16.

    Google Scholar 

  • Hu, Y., Zeng, Z., Wang, B., & Guo, S. (2017). Trans-caryophyllene inhibits amyloid β (Aβ) oligomer-induced neuroinflammation in BV-2 microglial cells. International Immunopharmacology, 51, 91–98. https://doi.org/10.1016/j.intimp.2017.07.009.

    Article  CAS  Google Scholar 

  • Huang, H., Al-Shabrawey, M., & Wang, M.-H. (2016). Cyclooxygenase-and cytochrome P450-derived eicosanoids in stroke. Prostaglandins & Other Lipid Mediators, 122, 45–53.

    Article  CAS  Google Scholar 

  • Kawahara, K., Hohjoh, H., Inazumi, T., Tsuchiya, S., & Sugimoto, Y. (2015). Prostaglandin E 2-induced inflammation: Relevance of prostaglandin E receptors. Biochim. Biophys. Acta (BBA)-Molecular Cell Biol. Lipids, 1851, 414–421.

    CAS  Google Scholar 

  • Khan, M. J., Saraf, S., & Saraf, S. (2017). Anti-inflammatory and associated analgesic activities of HPLC standardized alcoholic extract of known ayurvedic plant Schleichera oleosa. Journal of Ethnopharmacology, 197, 257–265.

    Article  Google Scholar 

  • Kumar, T., & Jain, V. (2014). Antinociceptive and anti-inflammatory activities of bridelia retusa methanolic fruit extract in experimental animals. The Scientific World Journal.

  • Lapa, A. J., Souccar, C., Lima-Landman, M. T. R., de Castro, M. S., & A., Lima, T.C.M. (2003). Métodos de avaliação da atividade farmacológica de plantas medicinais (p. 2017). Plantas Med: Soc. Bras.

    Google Scholar 

  • Li, K. K., Shen, S. S., Deng, X., Shiu, H. T., Siu, W. S., & Leung, P. C., et al. (2018). dihydrofisetin exerts its anti-inflammatory effects associated with suppressing Erk/p38 Mapk and Heme Oxygenase-1 activation in lipopolysaccharide-stimulated Raw 264.7 macrophages and carrageenan-induced mice paw edema. International Immunopharmacology, 54, 366–374.

    Article  CAS  Google Scholar 

  • Liu, K., Chen, Q., Liu, Y., Zhou, X., & Wang, X. (2012). Isolation and biological activities of decanal, linalool, valencene, and octanal from sweet orange oil. Journal of Food Science, 77, C1156–C1161.

    Article  CAS  Google Scholar 

  • Maling, H. M., Webster, M. E., Williams, M. A., Saul, W., & Anderson, W. (1974). Inflammation induced by histamine, serotonin, bradykinin and compound 48/80 in the rat: antagonists and mechanisms of action. Journal of Pharmacology and Experimental Therapeutics, 191, 300–310.

    CAS  Google Scholar 

  • Malone, M. H., & Robichaud, R. C. (1962). A Hippocratic screen for pure or crude drug materials, in: Lloydia. pp. 320-+.

  • Marques, F. M., Figueira, M. M., Schmitt, E. F. P., Kondratyuk, T. P., Endringer, D. C., Scherer, R., & Fronza, M. (2019). In vitro anti-inflammatory activity of terpenes via suppression of superoxide and nitric oxide generation and the NF-κB signalling pathway. Inflammopharmacology, 27, 281–289. https://doi.org/10.1007/s10787-018-0483-z.

    Article  CAS  Google Scholar 

  • Martins, A. O. B. P. B., Rodrigues, L. B., Cesário, F. R. A. S., de Oliveira, M. R. C., Tintino, C. D. M., & e Castro, F.F., Alcântara, I.S., Fernandes, M.N.M., de Albuquerque, T.R., & da Silva, M.S.A. (2017). Anti-edematogenic and anti-inflammatory activity of the essential oil from Croton rhamnifolioides leaves and its major constituent 1, 8-cineole (eucalyptol). Biomedicine & Pharmacotherapy, 96, 384–395.

    Article  CAS  Google Scholar 

  • Matsuda, M., Huh, Y., & Ji, R. R. (2019). Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain. J. Anesth., 33, 131–139. https://doi.org/10.1007/s00540-018-2579-4.

    Article  Google Scholar 

  • Mohamad, A. S., Akhtar, M. N., Zakaria, Z. A., Perimal, E. K., Khalid, S., & Mohd, P. A., et al. (2010). Antinociceptive activity of a synthetic chalcone, flavokawin B on chemical and thermal models of nociception in mice. European Journal of Pharmacology, 647, 103–109.

    Article  CAS  Google Scholar 

  • Montanari, R. M., Barbosa, L. C. A., Demuner, A. J., Silva, C. J., Carvalho, L. S., & Andrade, N. J. (2011). Chemical composition and antibacterial activity of essential oils from Verbenaceae species: Alternative sources of (E)-caryophyllene and germacrene-D. Quimica Nova, 34, 1550–1555.

    Article  CAS  Google Scholar 

  • Mostafa, M., Appidi, J. R., Yakubu, M. T., & Afolayan, A. J. (2010). Anti-inflammatory, antinociceptive and antipyretic properties of the aqueous extract of Clematis brachiata leaf in male rats. Pharmaceutical Biology, 48, 682–689.

    Article  CAS  Google Scholar 

  • Nam, J. H., Nam, D.-Y., & Lee, D.-U. (2016). Valencene from the rhizomes of cyperus rotundus inhibits skin photoaging-related ion channels and UV-induced melanogenesis in B16F10 melanoma cells. Journal of Natural Products, 79, 1091–1096.

    Article  CAS  Google Scholar 

  • Netea, M. G., Balkwill, F., Chonchol, M., Cominelli, F., Marc, Y., Giamarellos-bourboulis, E. J., et al. (2018). Europe PMC Funders Group Europe PMC Funders Author Manuscripts A guiding map for inflammation, 18, 826–831. https://doi.org/10.1038/ni.3790.A.

    Article  Google Scholar 

  • Olorukooba, A. B., & Odoma, S. (2019). Elucidation of the possible mechanism of analgesic action of methanol stem bark extract of Uapaca togoensis pax in mice. Journal of Ethnopharmacology, 245, 112156. https://doi.org/10.1016/j.jep.2019.112156.

    Article  CAS  Google Scholar 

  • Pahwa, R., Goyal, A., Bansal, P., & Jialal, I. (2020). Chronic Inflammation. Treasure Island (FL): StatPearls Publishing.

    Google Scholar 

  • Patil, K. R., & Patil, C. R. (2017). Anti-inflammatory activity of bartogenic acid containing fraction of fruits of Barringtonia racemosa Roxb. in acute and chronic animal models of inflammation. Journal of Traditional and Complementary Medicine, 7, 86–93.

    Article  Google Scholar 

  • Prut, L., & Belzung, C. (2003). The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European Journal of Pharmacology, 463, 3–33.

    Article  CAS  Google Scholar 

  • Ramirez, A. M., Cotera, L. B. F., & Gutierrez, R. M. Z. (2013). Anti-inflammatory activity of the hexane extract of byrsonimacrassi folia seeds in experimental animal models. Alternative Therapy, 19, 26–36.

    Google Scholar 

  • Ray, S.D., Ray, S., Zia-Ul-Haq, M., De Feo, V., & Dewanjee, S. (2015). Pharmacological basis of the use of the root bark of Zizyphus nummularia Aubrev.(Rhamnaceae) as anti-inflammatory agent. BMC Complementary Alternative Medicine, 15, 416.

  • Rezaee-Asl, M., Sabour, M., Nikoui, V., Ostadhadi, S., & Bakhtiarian, A. (2014). The Study of Analgesic Effects of Leonurus cardiaca L. in Mice by Formalin, Tail Flick and Hot Plate Tests. Int. Sch. Res. Not. 2014, 687697. https://doi.org/10.1155/2014/687697

  • Ribeiro, N. A., Abreu, T. M., Chaves, H. V., Bezerra, M. M., Monteiro, H. S. A., Jorge, R. J. B., & Benevides, N. M. B. (2014). Sulfated polysaccharides isolated from the green seaweed Caulerpa racemosa plays antinociceptive and anti-inflammatory activities in a way dependent on HO-1 pathway activation. Inflammation Research, 63, 569–580.

    Article  CAS  Google Scholar 

  • Silva, G. N., Martins, F. R., Matheus, M. E., Leitão, S. G., & Fernandes, P. D. (2005). Investigation of anti-inflammatory and antinociceptive activities of Lantana trifolia. Journal of Ethnopharmacology, 100, 254–259.

    Article  Google Scholar 

  • Silva, T. S. C., Suffredini, I. B., Ricci, E. L., Fernandes, S. R. C., Gonçalves, V., Jr., & Romoff, P., et al. (2015). Antinociceptive and anti-inflammatory effects of Lantana camara L. extract in mice. The Revista Brasileira de Plantas Medicinais, 17, 224–229.

    Article  Google Scholar 

  • Silva, F. V., Oliveira, I. S., Figueiredo, K. A., Melo Júnior, F. B., Costa, D. A., & Chaves, M. H., et al. (2014). Anti-inflammatory and antinociceptive effects of Sterculia striata A. St.-Hil. & Naudin (Malvaceae) in rodents. Journal of Medicinal Food, 17, 694–700.

    Article  CAS  Google Scholar 

  • Swingle, K. F., & Shideman, F. E. (1972). Phases of the inflammatory response to subcutaneous implantation of a cotton pellet and their modification by certain antiinflammatory agents. Journal of Pharmacology and Experimental Therapeutics, 183, 226–234.

    CAS  Google Scholar 

  • Tamaddonfard, E., Farshid, A. A., & Hosseini, L. (2012). Crocin alleviates the local paw edema induced by histamine in rats. Avicenna J. phytomedicine, 2, 97.

    Google Scholar 

  • Tjølsen, A., Berge, O.-G., Hunskaar, S., Rosland, J. H., & Hole, K. (1992). The formalin test: an evaluation of the method. Pain, 51, 5–17.

    Article  Google Scholar 

  • Tsoyi, K., Jang, H. J., Lee, Y. S., Kim, Y. M., Kim, H. J., & Seo, H. G., et al. (2011). (+)-Nootkatone and (+)-valencene from rhizomes of Cyperus rotundus increase survival rates in septic mice due to heme oxygenase-1 induction. Journal of Ethnopharmacology, 137, 1311–1317.

    Article  CAS  Google Scholar 

  • Uzcátegui, B., Ávila, D., Suárez-Roca, H., Quintero, L., Ortega, J., & González, B. (2004). Anti-inflammatory, antinociceptive, and antipyretic effects of Lantana trifolia Linnaeus in experimental animals. Investigacion Clinica, 45, 317–322.

    Google Scholar 

  • Vendramini-Costa, D. B., Spindola, H. M., de Mello, G. C., Antunes, E., Pilli, R. A., & de Carvalho, J. E. (2015). Anti-inflammatory and antinociceptive effects of racemic goniothalamin, a styryl lactone. Life Sciences, 139, 83–90.

    Article  CAS  Google Scholar 

  • Wang, D., Mann, J. R., & Dubois, R. N. (2005). The role of prostaglandins and other eicosanoids in the gastrointestinal tract. Gastroenterology, 128, 1445–1461.

    Article  CAS  Google Scholar 

  • Weverton, J., Bezerra, A., Rocha, M. I., & Sousa, J. D. (2019). Chemical composition and insecticidal action of essential oil from Lantana montevidensis ( Spreng .) Briq . (Chumbinho) against Nauphoeta cinerea Composición química y evaluación inseticida del aceite esencial de Lantana montevidensis ( Spreng .) Briq . 24, 1–11.

  • Wongrakpanich, S., Wongrakpanich, A., Melhado, K., & Rangaswami, J. (2018). A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging Dis. 9, 143–150. https://doi.org/10.14336/AD.2017.0306

  • Xie, Y., Wang, K., Huang, Q., & Lei, C. (2014). Evaluation toxicity of monoterpenes to subterranean termite. Reticulitermes chinensis Snyder. Industrial Crops and Products, 53, 163–166. https://doi.org/10.1016/j.indcrop.2013.12.021.

    Article  CAS  Google Scholar 

  • Xu, Z., & Chang, L. (2017). Verbenaceae, in: Identification and Control of Common Weeds: Volume 3. Springer, pp. 163–179.

  • Yang, I.J., Lee, D.-U., & Shin, H.M. (2016). Inhibitory effect of valencene on the development of atopic dermatitis-Like skin lesions in NC/Nga mice. Evidence-Based Complement. Alternative Medicine.

  • Yui, K., Imataka, G., Nakamura, H., Ohara, N., & Naito, Y. (2015). Eicosanoids derived from arachidonic acid and their family prostaglandins and cyclooxygenase in psychiatric disorders. Current Neuropharmacology, 13, 776–785.

    Article  CAS  Google Scholar 

  • Zapata-Morales, J. R., Alonso-Castro, A. J., Domínguez, F., Carranza-Álvarez, C., Castellanos, L. M. O., Martínez-Medina, R. M., & Pérez-Urizar, J. (2016). Antinociceptive activity of an ethanol extract of justicia spicigera. Drug Development Research, 77, 180–186.

    Article  CAS  Google Scholar 

  • Zhang, Z., Yang, C., Dai, X., Ao, Y., & Li, Y. (2017). Inhibitory effect of trans-caryophyllene (TC) on leukocyte-endothelial attachment. Toxicology and Applied Pharmacology, 329, 326–333. https://doi.org/10.1016/j.taap.2017.06.016.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP)—Finance Code BPI and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Financiadora de Estudos e Projetos—Brasil (FINEP).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Henrique Douglas Melo Coutinho, Raffaele Capasso or Irwin Rose Alencar de Menezes.

Ethics declarations

Conflict of interests

The author(s) deny the existence of any potential conflict of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, M.R.C., de Lima Silva, M.G., Alcântara, I.S. et al. Biological activities of the essential oil from the leaves of Lantana montevidensis (Spreng) Briq. in mice. Environ Dev Sustain 23, 14958–14981 (2021). https://doi.org/10.1007/s10668-021-01281-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01281-8

Keywords

Navigation