Skip to main content

Advertisement

Log in

Sulfated polysaccharides isolated from the green seaweed Caulerpa racemosa plays antinociceptive and anti-inflammatory activities in a way dependent on HO-1 pathway activation

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Marine algae are abundant sources of sulfated polysaccharides with various biological activities. Consequently, their biomolecules are of great of commercial interest. In this study, we investigated the potential antinociceptive activity of a sulfated polysaccharide obtained from the green seaweed Caulerpa racemosa (CrII) and the involvement of the hemoxigenase-1 (HO-1) pathway in its anti-inflammatory effect.

Methods

We used a systemic evaluation to verify possible toxic effects of Crll after consecutive treatments. Swiss mice and Wistar rats were used for all experiments.

Results

In Swiss mice, CrII (0.01, 0.1 and 1.0 mg/kg) significantly reduced the number of abdominal contortions and the duration of paw licking in the second phase after treatment with acetic acid and formalin, respectively. However, CrII was unable to prolong the reaction time of thermally stimulated animals. The anti-inflammatory effect of CrII (0.01, 0.1 and 1.0 mg/kg) was evidenced by a decreased number of leukocytes in the peritoneal cavities of the rats. CrII (0.01, 0.1 and 1.0 mg/kg) also reduced the amount of paw edema induced by carrageenan (Cg) and dextran. The anti-inflammatory effect of CrII was confirmed by reduced levels of myeloperoxidase in the paw tissue of the Cg groups. After inhibition with ZnPP IX, a specific HO-1 phenotype inhibitor, the anti-inflammatory effect of CrII was no longer observed in Cg-induced paw edema tests. Consecutive Crll (1.0 mg/kg) for 14 days did not change any biochemical or histopathological parameters, or cause mortality of mice.

Conclusions

CrII did not produce any signs of toxicity and effectively decreased nociception and inflammation. Also, the anti-inflammatory effect of Crll is at least in part dependent on the integrity of the HO-1 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fürst S. Transmitters involved in antinociception in the spinal cord. Brain Res Bull. 1999;48:129–41.

    Article  PubMed  Google Scholar 

  2. Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature. 2001;413:203–10.

    Article  CAS  PubMed  Google Scholar 

  3. Moore ND. In search of an ideal analgesic for common acute pain. Acute Pain. 2009;11:129–37.

    Article  CAS  Google Scholar 

  4. McCurdy CR, Scully SS. Analgesic substances derived from natural products (natureceuticals). Life Sci. 2005;78:476–84.

    Article  CAS  PubMed  Google Scholar 

  5. Robbins SL, Cotran RS, Kumar V. Pathologic basic of diseases. 5a ed. Philadelphia: W. B. Sauders Co; 1994.

    Google Scholar 

  6. Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006;147:232–40.

    Article  Google Scholar 

  7. Gozzelino R, Jeney V, Soares MP. Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol. 2010;50:323–54.

    Article  CAS  PubMed  Google Scholar 

  8. Mitrione SM, Villalon P, Lutton JD, Levere RD, Abraham NG. Inhibition of human adult and fetal heme oxygenase by new synthetic heme analogues. Am J Med Sci. 1988;296:180–6.

    Article  CAS  PubMed  Google Scholar 

  9. Blumenthal SB, Kiemer AK, Tiegs G, Seyfried S, Höltje M, Brandt B, Höltje H, Zahler S, Vollmar AM. Metalloporphyrins inactivate caspase-3 and -8. FASEB J. 2005;19:1272–9.

    Article  CAS  PubMed  Google Scholar 

  10. Pather N, Viljoenb AM, Kramer B. A biochemical comparison of the in vivo effects of Bulbine frutescens and Bulbine natalensis on cutaneous wound healing. J Ethnopharmacol. 2011;133:364–70.

    Article  PubMed  Google Scholar 

  11. Cardozo KHM, Guarantini T, Barros MP, Falcão VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, Pinto E. Metabolites from algae with economical impact. Comp Biochem Physiol C. 2007;146:60–78.

    Article  Google Scholar 

  12. Ananthi S, Raghavendran HRB, Sunil AG, Gayathri V, Ramakrishnan G, Vasanthi HR. In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornata (Marine Brown Alga). Food Chem Toxicol. 2010;48:187–92.

    Article  CAS  PubMed  Google Scholar 

  13. Ghosh P, Adhikari U, Ghosal PK, Pujol CA, Carlucci MJ, Damonte EB, Ray B. In vitro anti-herpetic activity of sulfated polysaccharide fractions from Caulerpa racemosa. Phytochemistry. 2004;65:3151–7.

    Article  CAS  PubMed  Google Scholar 

  14. Ji H, Shao H, Zhang C, Hong P, Xiong H. Separation of the polysaccharides in Caulerpa racemosa and their chemical composition and antitumor activity. J Appl Polym Sci. 2008;110:1435–40.

    Article  CAS  Google Scholar 

  15. Farias WRL, Valente AP, Pereira MS, Mourão PAS. Structure and anticoagulant activity of sulfated galactans. Isolation of a unique sulfated galactan from the red alga Botryocladia occidentalis and comparison of its anticoagulant action with that of sulfated galactans. J Bio Chem. 2000;275:29299–307.

    Article  CAS  Google Scholar 

  16. Farndale RW, Buttle DJ, Barrett AJ. Improved quantitation and discrimination of sulfated glycosaminoglycans by use of dimethyl-methyleno blue. Biochem Biophys Acta. 1986;883:173–7.

    Article  CAS  PubMed  Google Scholar 

  17. Dietrich CP, Dietrich SMC. Electrophoretic behaviour of acidic mucopolysaccharides in diamine buffers. Anal Biochem. 1966;70:645–7.

    Article  Google Scholar 

  18. Dodgson KS, Price RG. Determination of inorganic sulphate in studies on the enzymatic and non-enzymic hydrolysis of carbohydrate and other sulphate esters. Biochem J. 1961;78:312–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  20. Koster R, Anderson M, de Beer EJ. Acetic acid for analgesic screening. Federation Proc. 1959;18:412.

    Google Scholar 

  21. Dubuisson D, Dennis SG. The formalin test: a quantitative study of the analgesic affects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain. 1977;21:161–74.

    Article  Google Scholar 

  22. Hunskaar S, Fasmer OB, Hole K. Formalin test in mice, a useful technique for evaluating mild analgesics. J Neurosci Methods. 1985;14:69–76.

    Article  CAS  PubMed  Google Scholar 

  23. Eddy NB, Leimbach D. Synthetic analgesics. II. dithienylbutenyl and dithienylbutylamines. J Pharmacol Exp Ther. 1995;107:385–93.

    Google Scholar 

  24. Assreuy AMS, Gomes DM, Silva MSJ, Torres VM, Siqueira RCL, Pires AF. Biological effects of a sulfated-polysaccharide isolated from the marine red algae Champia feldmannii. Biol Pharma Bull. 2008;31:691–5.

    Article  CAS  Google Scholar 

  25. Souza GEP, Ferreira SH. Blockade antimacrophage serium of the migration of PMN neutrophils into the inflamed peritoneal cavity. Agents Actions. 1985;17:97–103.

    Article  PubMed  Google Scholar 

  26. Winter CA, Risley EA, Nuss GW. Carrageenin induced edema in hind paw of rats as an assay for anti-inflammatory drugs. Proc Soc Exp Biol Med. 1962;111:544–7.

    Article  CAS  PubMed  Google Scholar 

  27. Maity TK, Mandal SC, Mukherjee PK, Saha K, Das J, Pal M, Saha BP. Studies on antiinflammatory effect of Cassia tora leaf extract (Fam. Legumirosae). Phytotherapy Res. 1988;12:221–3.

    Article  Google Scholar 

  28. Bradley PP, Priebat DA, Christensen RD, Rothstein G. Measurement of cutaneous inflammation: estimation of neutrophils content with an enzyme marker. J Invest Dermatol. 1982;78:206–9.

    Article  CAS  PubMed  Google Scholar 

  29. Freitas A, Alves-Filho JC, Secco DD, Neto AF, Ferreira SH, Barja-Fidalgo C, Cunha FQ. Heme oxygenase/carbon monoxide biliverdin pathway down regulates neutrophil rolling, adhesion and migration in acute inflammation. Br J Pharmacol. 2006;149:345–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. le Bars D, Gozariu M, Cdden SW. Animal models of nociception. Pharmacol Rev. 2001;53:597–652.

    PubMed  Google Scholar 

  31. Rodrigues JAG, Vanderlei ESO, Silva LMCM, Araújo IWF, Queiroz INL, Paula GA, Abreu TM, Ribeiro NA, Lima V, Bezerra MM, Chaves HV, Jorge RJB, Monteiro HSA, Leite EL, Benevides NMB. Antinociceptive and anti-inflammatory activities of a sulfated polysaccharide isolated from the marine green seaweed Caulerpa cupressoides. Pharmacol Rep. 2012;64:282–92.

    Article  CAS  PubMed  Google Scholar 

  32. Hendershot LC, Forsaith J. Antagonism of frequency of phenylquinone induced writing in ten mouse by weak analgesics as non-analgesics. J Pharmacol Exp Ther. 1959;125:237–40.

    CAS  PubMed  Google Scholar 

  33. Shields SD, Cavanaugh DJ, Lee H, Anderson DJ, Basbaum AI. Pain behavior in the formalin test persists after ablation of the great majority of C-fiber nociceptors. Pain. 2010;151:422–9.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Bitencourt FS, Figueiredo JG, Mota MRL, Bezerra CCR, Silvestre P, Vale MR, Nascimento KS, Sampaio AH, Nagano CS, Saker-Sampaio S, Farias WRL, Cavada BS, Assreuy AMS, Alencar NMN. Antinociceptive and anti-inflammatory effects of a mucin-binding agglutinin isolated from the red alga Hypnea cervicornis. Naunyn-Schmiedeberg’s Arch Pharmacol. 2008;377:139–48.

    Article  CAS  Google Scholar 

  35. Araújo IWF, Vanderlei ESO, Rodrigues JAG, Coura CO, Quinderé ALG, Fontes BP, Queiroz INL, Jorge RJB, Bezerra MM, Silva AAR, Chaves HV, Monteiro HAS, Paula RCM, Benevides NMB. Effects of a sulfated polysaccharide isolated from the red seaweed Solieria filiformis on models of nociception and inflammation. Carbohydr Polymers. 2011;86:1207–15.

    Article  Google Scholar 

  36. Gunn A, Bobeck EN, Weber C, Morgan MM. The influence of non-nociceptive factors on hot-plate latency in rats. J Pain. 2011;12:222–7.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Nemirovsky A, Chen L, Zelma V, Jurna I. The antinociceptive effest of the combination of spinal morphine with systemic morphine or buprenorphine. Anesth Analg. 2001;93:197–203.

    Article  CAS  PubMed  Google Scholar 

  38. Yalcin I, Charlet A, Freund-Mercier MJ, Barrot M, Poisbeau P. Differentiating thermal allodynia and hyperalgesia using dynamic hot and cold plate in rodents. J Pain. 2009;10(767):773.

    Google Scholar 

  39. Nantel F, Dennis D, Gordon R, Northey A, Cirino M, Metters KM, Chan CC. Distribution and regulation of cyclooxygenases-2 in carrageenan-induced inflammation. Br J Pharmaco. 1999;128:853–9.

    Article  CAS  Google Scholar 

  40. Montanher AB, Zucolotto SM, Schenkel EP, Frode TS. Evidence of anti-inflammatory effects of Passiflora edulis in an inflammation model. J Ethnopharmacol. 2007;109:281–8.

    Article  PubMed  Google Scholar 

  41. Matsui SM, Muizzudin N, Arad S, Marenus K. Sulfated polysaccharides from red microalgae have anti-inflammatory in vitro and in vivo. Appl Biochem Biotechnol. 2003;104:13–22.

    Article  CAS  PubMed  Google Scholar 

  42. Bitencourt MAO, Dantas GR, Lira DP, Barbosa-Filho JM, Miranda GEC, Santos BVO, Souto JT. Aqueous and Methanolic extracts of Caulerpa mexicana suppress cell migration and ear edema induced by inflammatory agents. Mar Drugs. 2011;9:1332–45.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Lo TN, Almeida AP, Beaven MA. Dextran and carrageenin evoke different inflammatory response in rat with respect to composition of infiltrates and effect of indomethacin. J Pharmacol Exp Ther. 1982;221:261–7.

    CAS  PubMed  Google Scholar 

  44. Willis D, Moore AR, Frederick R, Willoughby DA. Heme oxygenase: a novel target for the modulation of the inflammatory response. Nat Med. 1996;2:87–90.

    Article  CAS  PubMed  Google Scholar 

  45. Amersi F, Buelow R, Kato H, Ke B, Coito AJ, Shen XD, Zhao D, Zaky J, Melinek J, Lassman CR. Upregulation of heme oxygenase-1 protects genetically fat zucker rat livers from ischemia/reperfusion injury. J Clin Invest. 1999;104:1631–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Willi D, Moore AR, Willoughby DA. Heme oxygenase isoform expression in cellular and antibody-madiates models of acute inflammation in the rats. J Pathol. 2000;190:627–34.

    Article  Google Scholar 

  47. Wagener FA, Eggert A, Boerman OC, Oyen WJ, Verhofstad A, Abraham NG, Adema G, van Kooyk Y, de Witte T, Figdor CG. Heme is a potent inducer of inflammation in mice and is counteracted by heme oxygenase. Blood. 2001;98:1802–11.

    Article  CAS  PubMed  Google Scholar 

  48. Song HJ, Shin CY, Oh TY, Sohn UD. The protective effect of eupatilin on indomethacin-induced cell damage in cultured feline ileal smooth muscle cells: involvement of HO-1 and ERK. J Ethnopharmacol. 2008;118:94–101.

    Article  CAS  PubMed  Google Scholar 

  49. Jeonga G, Lee D, Kim D, Jahng Y, Son J, Lee S, Kim Y. Neuroprotective and anti-inflammatory effects of mollugin via up-regulation of heme oxygenase-1 in mouse hippocampal and microglial cells. Eur J Pharmacol. 2011;654:226–34.

    Article  Google Scholar 

  50. Li B, Lee D, Jeong G, Kim G. Involvement of heme oxygenase-1 induction in the cytoprotective and immunomodulatory activities of 6,4′-dihydroxy-7-methoxyflavanone in murine hippocampal and microglia cells. Eur J Pharmacol. 2012;674:153–62.

    Article  CAS  PubMed  Google Scholar 

  51. Alcaraz MJ, Fernandez P, Guillen MI. Anti-inflammatory actions of the heme oxygenase-1 pathway. Curr Pharm Des. 2003;9:2541–51.

    Article  CAS  PubMed  Google Scholar 

  52. Vicente AM, Guillen MI, Habib A, Alcaraz MJ. Beneficial effects of heme oxygenase-1 up-regulation in the development of experimental inflammation induced by zymosan. J Pharmacol Exp Ther. 2003;307:1030–7.

    Article  CAS  PubMed  Google Scholar 

  53. Bednarz N, Zawacka-Pankau J, Kowalska A. Protoporphyrin IX induces apoptosis in HeLa cells prior to photodynamic treatment. Pharmacol Rep. 2007;59:474–9.

    CAS  PubMed  Google Scholar 

  54. Grangeiro NMG, Aguiar JA, Chaves HV, Silva AAR, Lima V, Benevides NMB, Brito GAC, Graça JRV, Bezerra MM. Heme oxygenase/carbon monoxide-biliverdin pathway may be involved in the antinociceptive activity of etoricoxib, a selective COX-2 inhibitor. Pharmacol Rep. 2011;63:112–9.

    Article  CAS  PubMed  Google Scholar 

  55. Vanderlei ESO, Araujo IWF, Quindere ALG, Fontes BP, Eloy YRG, Rodrigues JAG, Silva AAR, Chaves HV, Jorge RJB, Menezes DB, Evangelista JSAM, Bezerra MM, Benevides NMB. The involvement of the HO-1 pathway in the anti-inflammatory action of a sulfated polysaccharide isolated from the red seaweed Gracilaria birdiae. Inflamm Res. 2011;60:1121–30.

    Article  CAS  Google Scholar 

  56. Coura CO, de Araújo IWF, Vanderlei ESO, Rodrigues JAG, Quinderé AL, Fontes BP, Queiroz INL, Menezes DB, Bezerra MM, Silva AAR, Chaves HV, Jorge RJB, Evangelista JSAM, Benevides NMB. Antinociceptive and anti-inflammatory activity of sulfated polysaccharides from the red seaweed Gracilaria cornea. Basic Clin Pharmacol Toxicol. 2011;110:335–341. doi:10.1111/j.1742-7843.2011.00811.x.

    Google Scholar 

Download references

Acknowledgments

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenacão de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). H. S. A. Monteiro and N. M. B. Benevides are senior investigators of CNPq/Brazil.

Conflict of interest

No conflict of interest is declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norma Maria Barros Benevides.

Additional information

Responsible Editor: Mauro Teixeira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1643 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, N.A., Abreu, T.M., Chaves, H.V. et al. Sulfated polysaccharides isolated from the green seaweed Caulerpa racemosa plays antinociceptive and anti-inflammatory activities in a way dependent on HO-1 pathway activation. Inflamm. Res. 63, 569–580 (2014). https://doi.org/10.1007/s00011-014-0728-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-014-0728-2

Keywords

Navigation