Skip to main content

Advertisement

Log in

In vitro anti-inflammatory activity of terpenes via suppression of superoxide and nitric oxide generation and the NF-κB signalling pathway

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Background and Aims

Terpenes are considered the main components of essential oils and an important source for the identification of novel lead molecules. This study aimed to investigate the in vitro anti-inflammatory activity of l-carveol, l-carvone, and m-cimene (monoterpenes) and of valencene and guaiene (sesquiterpenes).

Methods

The influence on intracellular nitric oxide (NO) and pro- and anti-inflammatory cytokine (TNF-α, IL-1α and IL-10) production and on nuclear factor kappa B (NF-κB) activity was determined using Griess reagent, immunoenzymatic assay kits (ELISA) and chemiluminescence measurements in cell-based assays, respectively. Antioxidant activity was assayed through the protective effect against cellular oxidative damage produced by superoxide anion production (O ·−2 ) and hydrogen peroxide on macrophages and by the quenching activity of the NO radical.

Results and Discussion

Terpenes reduced the pro-inflammatory cytokines TNF-α and IL-1α and increased the production of IL-10. In addition, the terpenes, especially guaiene (53.3 ± 2.4%) and m-cymene (38.1 ± 0.6%), significantly inhibited NO production in a macrophage cell culture-based assay, whereas no effect was observed in the scavenging activity of this radical. l-carveol and m-cymene significantly inhibited O ·−2 production with reductions of approximately 68.6 ± 2.2% and 48.2 ± 4.2%, respectively, at a concentration of 10 μM. Moreover, these terpenes were verified to suppress NF-κB activity. The results indicate that these terpenes have therapeutic potential and may be used to suppress inflammatory diseases or as a leading compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

LPS:

Lipopolysaccharide

NO:

Nitric oxide

NF-κB:

Nuclear factor kappa B

O ·−2 :

Anion superoxide

ATCC:

American Type Culture Collection

References

  • Adetutu A, Morgan WA, Corcoran O (2011) Antibacterial, antioxidant and fibroblast growth stimulation activity of crude extracts of Bridelia ferruginea leaf, a wound-healing plant of Nigeria. J Ethnopharmacol 133(1):116–119

    Article  Google Scholar 

  • Ambrož M, Boušová I, Skarka A, Hanušová V, Králová V, Matoušková P, Szotáková B, Skálová L (2015) The influence of sesquiterpenes from Myrica rubra on the antiproliferative and pro-oxidative effects of doxorubicin and its accumulation in cancer cells. Molecules 20(8):15343–15358

    Article  Google Scholar 

  • Annan K, Houghton PJ (2008) Antibacterial, antioxidant and fibroblast growth stimulation of aqueous extracts of Ficus asperifolia Miq. and Gossypium arboreum L., wound-healing plants of Ghana. J Ethnopharmacol 119(1):141–144

    Article  Google Scholar 

  • Baker R, Hayden M, Ghosh S (2011) NF-κB, inflammation, and metabolic disease. Cell Metab 13(1):11–22

    Article  CAS  Google Scholar 

  • Barreiros A, David J, David J (2006) Estresse oxidativo: relação entre geração de espécies reativas e defesa do organismo. Quím Nova 29(1):113–123

    Article  CAS  Google Scholar 

  • Bates JN, Baker MT, Guerra R Jr, Harrison DG (1991) Nitric oxide generation from nitroprusside by vascular tissue: evidence that reduction of the nitroprusside anion and cyanide loss are required. Biochem Pharmacol 42:S157–S165

    Article  CAS  Google Scholar 

  • Brune K, Patrignani P (2015) New insights into the use of currently available non-steroidal anti-inflammatory drugs. J Pain Res 8:105–118

    Article  CAS  Google Scholar 

  • Choi HS, Kim JW, Cha YN, Kim C (2006) A quantitative nitroblue tetrazolium assay for determining intracellular superoxide anion production in phagocytic cells. J Immunoassay Immunochem 27(1):31–44

    Article  CAS  Google Scholar 

  • Coleman JW (2001) Nitric oxide in immunity and inflammation. Int Immunopharmacol 8:1397–1406

    Article  Google Scholar 

  • Crowell P, Kennan W, Haag J, Ahmad S, Vedejs E, Gould M (1992) Chemoprevention of mammary carcinogenesis by hydroxylated derivatives of d-limonene. Carcinogenesis 13(7):1261–1264

    Article  CAS  Google Scholar 

  • Dang T, Süssmuth RD (2017) Bioactive peptide natural products as lead structures for medicinal use. Acc Chem Res 50(7):1566–1576

    Article  CAS  Google Scholar 

  • De Sousa DP, de Farias Nóbrega FF, de Almeida RN (2007) Influence of the chirality of (R)-(−)- and (S)-(+)-carvone in the central nervous system: a comparative study. Chirality 19(4):264–268

    Article  Google Scholar 

  • De Stefano D, Maiuri MC, Simeon V, Grassia G, Soscia A, Cinelli MP, Carnuccio R (2007) Lycopene, quercetin and tyrosol prevent macrophage activation induced by gliadin and IFN-gamma. Eur J Pharmacol 566(1–3):192–199

    Article  Google Scholar 

  • Deutschman CS, Tracey KJ (2014) Sepsis: current dogma and new perspectives. Immunity 40:463–475

    Article  CAS  Google Scholar 

  • Echeverrigaray S, Zacaria J, Beltrão R (2010) Nematicidal activity of monoterpenoids against the root-knot nematode Meloidogyne incognita. Phytopathology 100(2):199–203

    Article  CAS  Google Scholar 

  • Feghali CA, Wright TM (1997) Cytokines in acute and chronic inflammation. Front Biosci 2:12–26

    Google Scholar 

  • Filippin LI, Vercelino R, Marroni NP, Xavier RM (2008) Influência de processos redox na resposta inflamatória da artrite reumatóide. Revista Brasileira de Reumatologia 48(1):17–24

    Article  Google Scholar 

  • Fullerton JN, Gilroy DW (2016) Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov 15:551–567

    Article  CAS  Google Scholar 

  • Gautam R, Jachak SM (2009) Recent developments in anti-inflammatory natural products. Med Res Rev 29(5):767–820

    Article  CAS  Google Scholar 

  • Gonçalves JC, Oliveira Fde S, Benedito RB, de Sousa DP, de Almeida RN, de Araújo DA (2008) Antinociceptive activity of (−)-carvone: evidence of association with decreased peripheral nerve excitability. Biol Pharm Bull 31(5):1017–1020

    Article  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126(1):131–138

    Article  CAS  Google Scholar 

  • Hamidzadeh K, Christensen SM, Dalby E, Chandrasekaran P, Mosser DM (2017) Macrophages and the recovery from acute and chronic inflammation. Annu Ver Physiol 79:567–592

    Article  CAS  Google Scholar 

  • Homhual S, Zhang HJ, Bunyapraphatsara N, Kondratyuk TP, Santarsiero BD, Mesecar AD, Herunsalee A, Chaukul W, Pezzuto JM, Fong HH (2006) Bruguiesulfurol, a new sulfur compound from Bruguiera gymnorrhiza. Planta Med 72(3):255–260

    Article  CAS  Google Scholar 

  • Hussain AI, Anwar F, Nigam PS, Ashraf M, Gilani AH (2010) Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four Mentha species. J Sci Food Agric 90:1827–1836

    CAS  PubMed  Google Scholar 

  • Kim S, Jung E, Kim JH, Park YH, Lee J, Park D (2011) Inhibitory effects of (−)-α-bisabolol on LPS-induced inflammatory response in RAW264.7 macrophages. Food Chem Toxicol 49(10):2580–2585

    Article  CAS  Google Scholar 

  • Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13(3):159–175

    Article  CAS  Google Scholar 

  • Kondratyuk TP, Park EJ, Yu R, Van Breemen RB, Asolkar RN, Murphy BT, Fenical W, Pezzuto JM (2012) Novel marine phenazines as potential cancer chemopreventive and anti-inflammatory agents. Mar Drugs 10:451–464

    Article  CAS  Google Scholar 

  • Koo HJ, Song YS, Kim HJ, Lee YH, Hong SM, Kim SJ, Kim BC, Jin C, Lim CJ, Park EH (2004) Antiinflammatory effects of genipin, an active principle of gardenia. Eur J Pharmacol 495(2–3):201–208

    Article  CAS  Google Scholar 

  • Kopf M, Bachmann MF, Marsland BJ (2010) Averting inflammation by targeting the cytokine environment. Nat Rev Drug Discov 9(9):703–718

    Article  CAS  Google Scholar 

  • Lawrence T (2009) The Nuclear Factor NF-κB Pathway in Inflammation. Cold Spring Harb Perspect Biol 1(6):a001651

    Article  Google Scholar 

  • Low P, Clark AM, Chou TC, Chang TC, Reynolds M, Ralph SJ (2015) Immunomodulatory activity of Melaleuca alternifolia concentrate (MAC): inhibition of LPS-induced NF-κB activation and cytokine production in myeloid cell lines. Int Immunopharmacol 26(1):257–264

    Article  CAS  Google Scholar 

  • Lozon Y, Sultan A, Lansdell S, Prytkova T, Sadek B, Yang KH, Howarth FC, Millar NS, Oz M (2016) Inhibition of human α7 nicotinic acetylcholine receptors by cyclic monoterpene carveol. Eur J Pharmacol 776:44–51

    Article  CAS  Google Scholar 

  • Marchese A, Arciola CR, Barbieri R, Silva AS, Nabavi SF, Tsetegho Sokeng AJ, Izadi M, Jafari NJ, Suntar I, Daglia M, Nabavi SM (2017) Update on monoterpenes as antimicrobial agents: a particular focus on p-cymene. Materials 10(8):E947. https://doi.org/10.3390/ma10080947

    Article  CAS  PubMed  Google Scholar 

  • Mendes S, Mansoor T, Rodrigues A, Armas J, Ferreira M (2013) Anti-inflammatory guaiane-type sesquiterpenes from the fruits of Pittosporum undulatum. Phytochemistry 95:308–314

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  • Omolo MO, Okinyo D, Ndiege IO, Lwande W, Hassanali A (2004) Repellency of essential oils of some Kenyan plants against Anopheles gambiae. Phytochemistry 65(20):2797–2802

    Article  CAS  Google Scholar 

  • Patel P, Thakkar V (2014) l-carvone induces p53, caspase 3 mediated apoptosis and inhibits the migration of breast cancer cell lines. Nutr Cancer 66(3):453–462

    Article  CAS  Google Scholar 

  • Pereira-Leite C, Nunes C, Jamal SK, Cuccovia IM, Reis S (2017) nonsteroidal anti-inflammatory therapy: a journey toward safety. Med Res Rev 37(4):802–859

    Article  Google Scholar 

  • Rozza AL, Meira de Faria F, Souza Brito AR, Pellizzon CH (2014) The gastroprotective effect of menthol: involvement of anti-apoptotic, antioxidant and anti-inflammatory activities. PLoS One 9(1):e86686

    Article  Google Scholar 

  • Salminen A, Lehtonen M, Suuronen T, Kaarniranta K, Huuskonen J (2008) Terpenoids: natural inhibitors of NF-kappaB signaling with anti-inflammatory and anticancer potential. Cell Mol Life Sci 65(19):2979–2999

    Article  CAS  Google Scholar 

  • Schett G, Elewaut D, McInnes IB, Dayer JM, Neurath MF (2013) How cytokine networks fuel inflammation: toward a cytokine-based disease taxonomy. Nat Med 19(7):822–824

    Article  CAS  Google Scholar 

  • Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82(13):1107–1112

    Article  CAS  Google Scholar 

  • Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res 480–481:243–268

    Article  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  Google Scholar 

  • Wagner KH, Elmadfa I (2003) Biological relevance of terpenoids. Overview focusing on mono-, di- and tetraterpenes. Ann Nutr Metab 47:95–106

    Article  CAS  Google Scholar 

  • Yadav VR, Prasad S, Sung B, Kannappan R, Aggarwal BB (2010) Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins (Basel) 2(10):2428–2466

    Article  CAS  Google Scholar 

  • Yang I, Lee D, Shin H (2016) Inhibitory effect of valencene on the development of atopic dermatitis-like skin lesions in nc/nga mice. J Evid-Based Complement Altern Med 2016:1–11

    CAS  Google Scholar 

  • Zhang K, Song F, Lu X, Chen W, Huang C, Li L, Liang D, Cao S, Dai H (2017) MicroRNA-322 inhibits inflammatory cytokine expression and promotes cell proliferation in LPS-stimulated murine macrophages by targeting NF-κB1 (p50). Biosci Rep 37(1):BSR20160239

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Espírito Santo (FAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support (PQ- Processo: 310680/2016-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcio Fronza.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, F.M., Figueira, M.M., Schmitt, E.F.P. et al. In vitro anti-inflammatory activity of terpenes via suppression of superoxide and nitric oxide generation and the NF-κB signalling pathway. Inflammopharmacol 27, 281–289 (2019). https://doi.org/10.1007/s10787-018-0483-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-018-0483-z

Keywords

Navigation