Skip to main content
Log in

Toxicological challenges to microbial bioethanol production and strategies for improved tolerance

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Bioethanol production output has increased steadily over the last two decades and is now beginning to become competitive with traditional liquid transportation fuels due to advances in engineering, the identification of new production host organisms, and the development of novel biodesign strategies. A significant portion of these efforts has been dedicated to mitigating the toxicological challenges encountered across the bioethanol production process. From the release of potentially cytotoxic or inhibitory compounds from input feedstocks, through the metabolic co-synthesis of ethanol and potentially detrimental byproducts, and to the potential cytotoxicity of ethanol itself, each stage of bioethanol production requires the application of genetic or engineering controls that ensure the host organisms remain healthy and productive to meet the necessary economies required for large scale production. In addition, as production levels continue to increase, there is an escalating focus on the detoxification of the resulting waste streams to minimize their environmental impact. This review will present the major toxicological challenges encountered throughout each stage of the bioethanol production process and the commonly employed strategies for reducing or eliminating potential toxic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aden A, Ruth M, Ibsen K. et al. (2002) Lignocellulosic biomass ethanol process design and economics utiliaing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. Report: NREL/TP-510-32438, national renewable energy laboratory

  • Akinosho H, Yee K, Close D et al (2014) The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications. Front. Chem. doi:10.3389/fchem.2014.00066

    Google Scholar 

  • Alexandre H, Ansanay-Galeote V, Dequin S et al (2001) Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett 498:98–103

    Article  CAS  Google Scholar 

  • Allen SA, Clark W, McCaffery JM et al (2010) Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels 3:1–10

    Article  CAS  Google Scholar 

  • Almeida JR, Runquist D, Sànchez Nogué V et al (2011) Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Biotechnol J 6:286–299

    Article  CAS  Google Scholar 

  • Almeida JRM, Modig T, Petersson A et al (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Sacchoromyces cerevisiae. J Chem Technol Biotechnol 82:340–349

    Article  CAS  Google Scholar 

  • Ankarloo J, Wikman S, Nicholls IA (2010) Escherichia coli mar and acrAB mutants display no tolerance to simple alcohols. Int J Mol Sci 11:1403–1412

    Article  CAS  Google Scholar 

  • Aono R, Tsukagoshi N, Yamamoto M (1998) Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12. J Bacteriol 180:938–944

    CAS  Google Scholar 

  • Argyros DA, Tripathi SA, Barrett TF et al (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 77:8288–8294

    Article  CAS  Google Scholar 

  • Axe DD, Bailey JE (1995) Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coli. Biotechnol Bioeng 47:8–19

    Article  CAS  Google Scholar 

  • Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86:2273–2282

    Article  CAS  Google Scholar 

  • Beaven MJ, Charpentier C, Rose AH (1982) Production and tolerance of ethanol in relation to phospholipid fatty-acyl composition in Saccharomyces cerevisiae NCYC 431. J Gen Microbiol 128:1447–1455

    CAS  Google Scholar 

  • Biswas R, Prabhu S, Lynd LR et al (2014) Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum. PLoS One 9:e86389

    Article  CAS  Google Scholar 

  • Biswas R, Zheng T, Olson DG et al (2015) Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum. Biotechnol Biofuels 8:20

    Article  CAS  Google Scholar 

  • Borden JR, Papoutsakis ET (2007) Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum. Appl Env Biotechnol 73:3061–3068

    CAS  Google Scholar 

  • Borole A, Mielenz J (2011) Estimating hydrogen production potential in biorefineries using microbial electrolysis cell technology. Int J Hydrogen Energy 36:14787–14795

    Article  CAS  Google Scholar 

  • Borole A, Mielenz J, Vishnivetskaya T et al (2009) Controlling accumulation of fermentation inhibitors in biorefinery water recycle using microbial fuel cells. Biotechnol Biofuels 2:7–21

    Article  CAS  Google Scholar 

  • Borole AP (2011) Improving energy efficiency and enabling water recycle in biorefineries using bioelectrochemical cells. Biofuels Bioprod Biorefin 5:28–36

    Article  CAS  Google Scholar 

  • Borole AP, Hamilton C, Schell D (2013) Conversion of residual organics in corn stover-derived biorefinery stream to bioenergy via microbial fuel cells. Environ Sci Technol 47:642–648

    Article  CAS  Google Scholar 

  • Brethauer S, Wyman CE (2010) Review: continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresour Technol 101:4862–4874

    Article  CAS  Google Scholar 

  • Brown SD, Guss AM, Karpinets TV et al (2011) Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc Natl Acad Sci 108:13752–13757

    Article  CAS  Google Scholar 

  • Bull HB, Breese K (1978) Interaction of alcohols with proteins. Biopolymers 17:2121–2131

    Article  CAS  Google Scholar 

  • Chandel AK, Chan E, Rudravaram R et al (2007a) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2:14–32

    Google Scholar 

  • Chandel AK, Kapoor RK, Singh A et al (2007b) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98:1947–1950

    Article  CAS  Google Scholar 

  • Chandel AK, Singh OV, da Silva SS (2011) Detoxification of lignocellulosic hydrolysates for improved bioethanol production. In: Dos Santos Bernardes MA (ed) Biofuel production: recent developments and prospectives. INTECH, Rijeka

    Google Scholar 

  • Chandel AK, Singh OV, Rao LV (2010) Biotechnological applications of hemicellulosic derived sugars: state-of-the-art. In: Singh OV, Harvey SP (eds) Sustainable biotechnology: renewable resources and new perspectives. Springer, Netherlands

    Google Scholar 

  • Chen X, Khanna M (2013) Food vs. fuel: the effect of biofuel policies. Am J Agric Econ 95:289–295

    Article  Google Scholar 

  • Cherrington CA, Hinton M, Chopra I (1990) Effect of short-chain organic acids on macromolecular synthesis in Escherichia coli. J Appl Bacteriol 68:69–74

    Article  CAS  Google Scholar 

  • Chong H, Huang L, Yeow J et al (2013) Improving ethanol tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). PLoS One 8:e57628

    Article  CAS  Google Scholar 

  • Clarkson SM, Hamilton-Brehm SD, Giannone RJ et al (2014) A comparative multidimensional LC-MS proteomic analysis reveals mechanisms for furan aldehyde detoxification in Thermoanaerobacter pseudethanolicus 39E. Biotechnol Biofuels 7:165–179

    Article  CAS  Google Scholar 

  • Clausen M, Lamb CJ, Megnet R et al (1994) PAD1 encodes phenylacrylic acid decarboxylase which confers resistance to cinnamic acid in Saccharomyces cerevisiae. Gene 142:107–112

    Article  CAS  Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266

    Article  CAS  Google Scholar 

  • Ding J, Huang X, Zhang L et al (2009) Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 85:253–263

    Article  CAS  Google Scholar 

  • Dong HW, Fan LQ, Luo Z et al (2013) Improvement of ethanol productivity and energy efficiency by degradation of inhibitors using recombinant Zymomonas mobilis (pHW20a-fdh). Biotechnol Bioeng 110:2395–2404

    Article  CAS  Google Scholar 

  • Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels 4:32–41

    Article  CAS  Google Scholar 

  • EIA (2013) Few transportation fuels surpass the energy densities of gasoline and diesel. http://www.eia.gov/todayinenergy/detail.cfm?id=9991. Accessed February, 2015. United States Energy Information Administration, Washington

  • Ezeji TC, Qureshi N, Karcher P et al (2006) Production of butanol from corn. In: Minteer S (ed) Alcoholic fuels. CRC Press, Boca Ratan

    Google Scholar 

  • Fenske J, Griffin D, Penner M (1998) Comparison of aromatic monomers in lignocellulosic biomass prehydrolysates. J Ind Microbiol Biotechnol 20:364–368

    Article  CAS  Google Scholar 

  • Fitzgerald D, Stratford M, Gasson M et al (2004) Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. J Appl Microbiol 97:104–113

    Article  CAS  Google Scholar 

  • Fu N, Peiris P, Markham J et al (2009) A novel co-culture process with Zymomonas mobilis and Pichia stipitis for efficient ethanol production on glucose/xylose mixtures. Enzyme Microb Technol 45:210–217

    Article  CAS  Google Scholar 

  • Ginley DS, Cahen D (2011) Fundamentals of materials for energy and environmental sustainability. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gonzalez R, Tao H, Purvis J et al (2003) Gene array-based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: comparison of KO11 (parent) to LY01 (resistant mutant). Biotechnol Prog 19:612–623

    Article  CAS  Google Scholar 

  • Goodey AR, Tubb RS (1982) Genetic and biochemical analysis of the ability of Saccharomyces cerevisiae to decarboxylate cinnamic acids. Microbiology 128:2615–2620

    Article  CAS  Google Scholar 

  • Gutierrez T, Buszko ML, Ingram LO et al (2002) Reduction of furfural to furfuryl alcohol by ethanologenic strains of bacteria and its effect on ethanol production from xylose. Appl Biochem Biotechnol 98–100:327–340

    Article  Google Scholar 

  • Gutierrez T, Ingram LO, Preston JF (2006) Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1-an enzyme important in the detoxification of furfural during ethanol production. J Biotechnol 121:154–164

    Article  CAS  Google Scholar 

  • Hadi S, Rehman SA (1989) Specificity of the interaction of furfural with DNA. Mutat Res 225:101–106

    Article  CAS  Google Scholar 

  • Haft RJ, Keating DH, Schwaegler T et al (2014) Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria. Proc Natl Acad Sci 111:E2576–E2585

    Article  CAS  Google Scholar 

  • Hallsworth JE, Nomura Y, Iwahara M (1998) Ethanol-induced water stress and fungal growth. J Ferment Bioeng 86:451–456

    Article  CAS  Google Scholar 

  • Hasunuma T, Sanda T, Yamada R et al (2011) Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Fact 10:1–13

    Article  CAS  Google Scholar 

  • Hazelwood LA, Tai SL, Boer VM et al (2006) A new physiological role for Pdr12p in Saccharomyces cerevisiae: export of aromatic and branched-chain organic acids produced in amino acid catabolism. FEMS Yeast Res 6:937–945

    Article  CAS  Google Scholar 

  • Heer D, Heine D, Sauer U (2009) Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases. Appl Environ Microbiol 75:7631–7638

    Article  CAS  Google Scholar 

  • Herrero AA, Gomez RF (1980) Development of ethanol tolerance in Clostridium thermocellum: effect of growth temperature. Appl Environ Microbiol 40:571–577

    CAS  Google Scholar 

  • Herrero AA, Gomez RF, Roberts MF (1985a) 31P NMR studies of Clostridium thermocellum. Mechanism of end product inhibition by ethanol. J Biol Chem 260:7442–7451

    CAS  Google Scholar 

  • Herrero AA, Gomez RF, Snedecor B et al (1985b) Growth inhibition of Clostridium thermocellum by carboxylic acids: a mechanism based on uncoupling by weak acids. Appl Microbiol Biotechnol 22:53–62

    CAS  Google Scholar 

  • Hirst K (2002) Modular science for AQA. Pearson Education, Jordan Hill

    Google Scholar 

  • Holyoak CD, Bracey D, Piper PW et al (1999) The Saccharomyces cerevisiae weak-acid-inducible ABC transporter Pdr12 transports fluorescein and preservative anions from the cytosol by an energy-dependent mechanism. J Bacteriol 181:4644–4652

    CAS  Google Scholar 

  • Hong ME, Lee KS, Yu BJ et al (2010) Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering. J Biotechnol 149:52–59

    Article  CAS  Google Scholar 

  • Hu X, Wang M, Tan T et al (2007) Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics 175:1479–1487

    Article  CAS  Google Scholar 

  • Humbird D, David R, Tao L. et al. (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol - dilute-acid pretreatment and enzymatic hydrolysis of corn stover. Report: NREL/TP-5100-47764, National Renewable Energy Laboratory

  • Ingram L, Gomez P, Lai X et al (1998) Metabolic engineering of bacteria for ethanol production. Biotechnol Bioeng 58:204–214

    Article  CAS  Google Scholar 

  • Ingram LO (1976) Adaptation of membrane lipids to alcohols. J Bacteriol 125:670–678

    CAS  Google Scholar 

  • Isken S, de Bont JA (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238

    Article  CAS  Google Scholar 

  • Joachimsthal E, Haggett KD, Jang JH et al (1998) A mutant of Zymomonas mobilis ZM4 capable of ethanol production from glucose in the presence of high acetate concentrations. Biotechnol Lett 10:137–142

    Article  Google Scholar 

  • Jönsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16–26

    Article  CAS  Google Scholar 

  • Keweloh H, Weyrauch G, Rehm HJ (1990) Phenol-induced membrane changes in free and immobilized Escherichia coli. Appl Microbiol Biotechnol 33:66–71

    CAS  Google Scholar 

  • Khan Q, Hadi S (1993) Effect of furfural on plasmid DNA. Biochem Mol Biol Int 29:1153–1160

    CAS  Google Scholar 

  • Kirakosyan A, Kaufman PB (2009) Recent advances in plant biotechnology. Springer, New York

    Book  Google Scholar 

  • Klinke HB, Thomsen A, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26

    Article  CAS  Google Scholar 

  • Krulwich TA, Lewinson O, Padan E et al (2005) Do physiological roles foster persistence of drug/multidrug-efflux transporters? A case study. Nat Rev Microbiol 3:566–572

    Article  CAS  Google Scholar 

  • Kuhad RC, Gupta R, Khasa YP et al (2011) Bioethanol production from pentose sugars: current status and future prospects. Renew Sustain Energy Rev 15:4950–4962

    Article  CAS  Google Scholar 

  • Larsson S, Nilvebrant NO, Jonsson LJ (2001) Effect of overexpression of Saccharomyces cerevisiae Pad1p on the resistance to phenylacrylic acids and lignocellulose hydrolysates under aerobic and oxygen-limited conditions. Appl Microbiol Biotechnol 57:167–174

    Article  CAS  Google Scholar 

  • Larsson S, Palmqvist E, Hahn-Hägerdal B et al (1999a) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24:151–159

    Article  CAS  Google Scholar 

  • Larsson S, Reimann A, Nilvebrant NO et al (1999b) Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol 77:91–103

    Article  Google Scholar 

  • Lee JY, Phung NT, Chang IS et al (2003) Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol Lett 223:185–191

    Article  CAS  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  CAS  Google Scholar 

  • Linville JL, Rodriguez M Jr, Land ML et al (2013) Industrial robustness: understanding the mechanism of tolerance for the Populus hydrolysate-tolerant mutant strain of Clostridium thermocellum. PLoS One 8:e78829

    Article  CAS  Google Scholar 

  • Liu H, Cheng SA, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39:658–662

    Article  CAS  Google Scholar 

  • Lombardo MJ, Aponyi I, Rosenberg SM (2004) General stress response regulator RpoS in adaptive mutation and amplification in Escherichia coli. Genetics 166:669–680

    Article  CAS  Google Scholar 

  • Lund PA (2009) Multiple chaperonins in bacteria—why so many? FEMS Microbiol. Rev. 33:785–800

    CAS  Google Scholar 

  • Luo C, Brink D, Blanch H (2002) Identification of potential fermentation inhibitors in coversion of hybrid poplar hydrolysate to ethanol. Biomass Bioenergy 22:125–138

    Article  CAS  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE et al (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH et al (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  • Ma M, Han P, Zhang R et al (2013) Ultrastructural changes of Saccharomyces cerevisiae in response to ethanol stress. Can J Microbiol 59:589–597

    Article  CAS  Google Scholar 

  • Ma M, Liu ZL (2010) Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae. BMC Genom 11:660–679

    Article  CAS  Google Scholar 

  • Maiorella B, Blanch H, Wilke C (1984) Feed component inhibition in ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol Bioeng 26:1155–1166

    Article  CAS  Google Scholar 

  • Martinez A, Rodriguez ME, Wells ML et al (2001) Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Prog 17:287–293

    Article  CAS  Google Scholar 

  • Martinez A, Rodriguez ME, York SW et al (2000) Effects of Ca(OH)2 treatments (“overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol Bioeng 69:526–536

    Article  CAS  Google Scholar 

  • Meaden PG, Arneborg N, Guldfeldt LU et al (1999) Endocytosis and vacuolar morphology in Saccharomyces cerevisiae are altered in response to ethanol stress or heat shock. Yeast 15:1211–1222

    Article  CAS  Google Scholar 

  • Miller EN, Jarboe LR, Yomano LP et al (2009) Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli. Appl Environ Microbiol 75:4315–4323

    Article  CAS  Google Scholar 

  • Mills TY, Sandoval NR, Gill RT (2009) Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels 2:26–37

    Article  CAS  Google Scholar 

  • Modig T, Lidén G, Taherzadeh M (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J 363:769–776

    Article  CAS  Google Scholar 

  • Mohagheghi A, Dowe N, Schell D et al (2004) Performance of a newly developed integrant of Zymomonas mobilis for ethanol production on corn stover hydrolysate. Biotechnol Lett 26:321–325

    Article  CAS  Google Scholar 

  • Mohagheghi A, Ruth M, Schell DJ (2006) Conditioning hemicellulose hydrolysates for fermentation: effects of overliming pH on sugar and ethanol yields. Process Biochem 41:1806–1811

    Article  CAS  Google Scholar 

  • Mukai N, Masaki K, Fujii T et al (2010) PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. J Biosci Bioeng 109:564–569

    Article  CAS  Google Scholar 

  • Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10

    Article  CAS  Google Scholar 

  • Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12:307–331

    Article  CAS  Google Scholar 

  • Nilvebrant NO, Reimann A, Larsson S et al (2001) Detoxification of lignocellulose hydrolysates with ion-exchange resins. Appl Biochem Biotechnol 91–3:35–49

    Article  Google Scholar 

  • Nimlos MR, Qian X, Davis M et al (2006) Energetics of xylose decomposition as determined using quantum mechanics modeling. J Phys Chem A 110:11824–11838

    Article  CAS  Google Scholar 

  • Palmqvist E, Haggett KD (1997) Simultaneous detoxification and enzyme production of hemicellulose hydrolysates obtained after steam pretreatment. Enzyme Microb Technol 20:286–293

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74:17–24

    Article  CAS  Google Scholar 

  • Papoutsakis ET, Meyer CL (1985) Fermentation equations for propionic-acid bacteria and production of assorted oxychemicals from various sugars. Biotechnol Bioeng 27:67–80

    Article  CAS  Google Scholar 

  • Peng X, Shindo K, Kanoh K et al (2005) Characterization of Sphingomonas aldehyde dehydrogenase catalyzing the conversion of various aromatic aldehydes to their carboxylic acids. Appl Microbiol Biotechnol 69:141–150

    Article  CAS  Google Scholar 

  • Petersson A, Almeida JR, Modig T et al (2006) A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23:455–464

    Article  CAS  Google Scholar 

  • Piper PW (1995) The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett 134:121–127

    Article  CAS  Google Scholar 

  • Rabaey K, Clauwaert P, Aelterman P et al (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39:8077–8082

    Article  CAS  Google Scholar 

  • Rahman SA, Hadi S (1991) Reaction of furfural and methylfurfural with DNA: use of single-strand-specific nucleases. Food Chem Toxicol 29:719–721

    Article  Google Scholar 

  • Ramos JL, Duque E, Gallegos MT et al (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768

    Article  CAS  Google Scholar 

  • Ranatunga TD, Jervis J, Helm RF et al (2000) The effect of overliming on the toxicity of dilute acid pretreated lignocellulosics: the role of inorganics, uronic acids and ether-soluble organics. Enzyme Microb Technol 27:240–247

    Article  CAS  Google Scholar 

  • Rao R, Dufour N, Swana J (2011) Using microorganisms to brew biofuels. In Vitro Cell Dev Biol 47:637–649

    Article  CAS  Google Scholar 

  • Roe AJ, McLaggan D, Davidson I et al (1998) Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. J Bacteriol 180:767–772

    CAS  Google Scholar 

  • Rumbold K, van Buijsen HJ, Overkamp KM et al (2009) Microbial production host selection for converting second-generation feedstocks into bioproducts. Microb Cell Fact 8:64–75

    Article  CAS  Google Scholar 

  • Rydzak T, Levin D, Cicek N et al (2011) End-product induced metabolic shifts in Clostridium thermocellum ATCC 27405. Appl Microbiol Biotechnol 92:199–209

    Article  CAS  Google Scholar 

  • Sannigrahi P, Ragauskas AJ (2013) Fundamentals of biomass pretreatment by fractionation. In: Wyman C (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, West Sussex

    Google Scholar 

  • Sardessai Y, Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153:263–268

    Article  CAS  Google Scholar 

  • Scully SM, Orlygsson J (2015) Recent advances in second generation ethanol production by thermophilic bacteria. Energies 8:1–30

    Article  CAS  Google Scholar 

  • Seymour IJ, Piper PW (1999) Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors. Microbiology 145:231–239

    Article  CAS  Google Scholar 

  • Shao X, Raman B, Zhu M et al (2011) Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum. Appl Microbiol Biotechnol 92:641–652

    Article  CAS  Google Scholar 

  • Sierra R, Smith A, Granda C et al (2008) Producing fuels and chemical from lignocellulosic biomass. Chem Eng Prog 104:S10–S17

    CAS  Google Scholar 

  • Taylor MP, Mulako I, Tuffin M et al (2012) Understanding physiological responses to pre-treatment inhibitors in ethanologenic fermentations. Biotechnol J 7:1169–1181

    Article  CAS  Google Scholar 

  • Terracciano JS, Kashket ER (1986) Intracellular conditions required for initiation of solvent production by Clostridium acetobutylicum. Appl Environ Microbiol 52:86–91

    CAS  Google Scholar 

  • Timmons MD, Knutson BL, Nokes SE et al (2009) Analysis of composition and structure of Clostridium thermocellum membranes from wild-type and ethanol-adapted strains. Appl Microbiol Biotechnol 82:929–939

    Article  CAS  Google Scholar 

  • Tomas CA, Beamish J, Papoutsakis ET (2004) Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J Bacteriol 186:2006–2018

    Article  CAS  Google Scholar 

  • Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69:4951–4965

    Article  CAS  Google Scholar 

  • Wadskog I, Adler L (2003) Ion homeostasis in Saccharomyces cerevisiae under NaCl stress. In: Hohmann S, Mager P (eds) Yeast stress responses. Springer, Berlin

    Google Scholar 

  • Warnecke T, Gill RT (2005) Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb Cell Fact 4:25

    Article  CAS  Google Scholar 

  • Watanabe M, Aizawa Y, Iida T et al (2005) Glucose reactions with acid and base catalysts in hot compressed water at 473K. Carbohydr Res 340:1925–1930

    Article  CAS  Google Scholar 

  • Weber C, Farwick A, Benisch F et al (2010) Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 87:1303–1315

    Article  CAS  Google Scholar 

  • Weber FJ, de Bont JA (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286:225–245

    Article  CAS  Google Scholar 

  • Weil JR, Dien B, Bothast R et al (2002) Removal of fermentation inhibitors formed during pretreatment of biomass by polymeric adsorbents. Ind Eng Chem Res 41:6132–6138

    Article  CAS  Google Scholar 

  • Williams TI, Combs JC, Lynn BC et al (2007) Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum. Appl Microbiol Biotechnol 74:422–432

    Article  CAS  Google Scholar 

  • Wilson CM, Yang S, Rodriguez M Jr et al (2013) Clostridium thermocellum transcriptomic profiles after exposure to furfural or heat stress. Biotechnol Biofuels 6:131–144

    Article  CAS  Google Scholar 

  • Wood JM, Bremer E, Csonka LN et al (2001) Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp Biochem Physiol A 130:437–460

    Article  CAS  Google Scholar 

  • Wooley R, Ruth M, Sheehan J. et al. (1999) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis current and futuristic scenarios. Report: National Renewable Energy Laboratory

  • Xu L, Tschirner U (2011) Improved ethanol production from various carbohydrates through anaerobic thermophilic co-culture. Bioresour Technol 102:10065–10071

    Article  CAS  Google Scholar 

  • Yacobucci B, Schnepf R, Net T (2010) Energy: ethanol. The Capitol.Net, Alexandria

    Google Scholar 

  • Yang S, Giannone RJ, Dice L et al (2012) Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress. BMC Genom 13:336–353

    Article  CAS  Google Scholar 

  • Yasokawa D, Iwahashi H (2010) Toxicogenomics using yeast DNA microarrays. J Biosci Bioeng 110:511–522

    Article  CAS  Google Scholar 

  • Yat SC, Berger A, Shonnard DR (2008) Kinetic characterization for dilute sulfuric acid hydrolysis of timber varieties and switchgrass. Bioresour Technol 99:3855–3863

    Article  CAS  Google Scholar 

  • Zaldivar J, Martinez A, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65:24–33

    Article  CAS  Google Scholar 

  • Zhao X, Bai F (2009) Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol 144:23–30

    Article  CAS  Google Scholar 

  • Zhao XQ, Xue C, Ge XM et al (2009) Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation. J Biotechnol 139:55–60

    Article  CAS  Google Scholar 

  • Zhu X, Cui J, Feng Y et al (2013) Metabolic adaption of ethanol-tolerant Clostridium thermocellum. PLoS One 8:e70631

    Article  CAS  Google Scholar 

  • Zingaro KA, Nicolaou SA, Papoutsakis ET (2013) Dissecting the assays to assess microbial tolerance to toxic chemicals in bioprocessing. Trends Biotechnol 31:643–653

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Funding for this review was provided by the Georgia Institute of Technology, Renewable BioProducts Institute Paper Science and Technology Fellowship and an Oak Ridge National Laboratory Laboratory Directed Research and Development grant. Additional funding was provided by the Bioenergy Science Center (BESC), which is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. This manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Close.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest and that they have performed these studies in accordance with acceptable ethical procedures

Additional information

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akinosho, H., Rydzak, T., Borole, A. et al. Toxicological challenges to microbial bioethanol production and strategies for improved tolerance. Ecotoxicology 24, 2156–2174 (2015). https://doi.org/10.1007/s10646-015-1543-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-015-1543-4

Keywords

Navigation