Skip to main content

Advertisement

Log in

Biofuel production from microalgae: challenges and chances

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

The inherent capability and increased efficiency of microalgae to convert sunlight into solar chemical energy are further enhanced by the higher amount of oils stored in microalgae compared to other land-based plant species. Therefore, the widespread interest in producing biofuels from microalgae has gained considerable interest among leading energy experts and researchers due to the burgeoning global issues stemming from the depletion of fossil fuel reserves, future energy security, increasing greenhouse gas emissions, and the competition for limited resources between food crops and conventional biomass feedstock. This paper aims to present the recent advances in biofuel production from microalgae and the potential benefits of microalgae in the energy and environmental sectors, as well as sustainable development. Besides, bottlenecks and challenges mainly relating to techniques of cultivation and harvesting, as well as downstream processes are completely presented. Promising solutions and novel trends for realizing strategies of producing biofuels from microalgae on an industrial and commercial scale are also discussed in detail. Alternatively, the role of microalgae in the circular economy is thoroughly analyzed, indicating that the potential of scaling up current microalgae-based production could benefit from the waste-to-energy strategy with microalgae as a key intermediate. In the future, further research into combining different microalgae biomass pretreatment techniques, separating the microalgae feedstock from the cultured media, developing new species, and optimizing the biofuel production process should be carried out to reduce the prices of microalgae biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abo BO, Odey EA, Bakayoko M, Kalakodio L (2019) Microalgae to biofuels production: a review on cultivation, application and renewable energy. Rev Environ Health 34:91–99

    Article  CAS  PubMed  Google Scholar 

  • Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353. https://doi.org/10.1016/j.biotechadv.2012.02.005

    Article  PubMed  Google Scholar 

  • Adeniyi OM, Azimov U, Burluka A (2018) Algae biofuel: Current status and future applications. Renew Sustain Energy Rev 90:316–335. https://doi.org/10.1016/j.rser.2018.03.067

    Article  Google Scholar 

  • Adnan MA, Xiong Q, Muraza O, Hossain MM (2020) Gasification of wet microalgae to produce H2-rich syngas and electricity: a thermodynamic study considering exergy analysis. Renew Energy 147:2195–2205

    Article  CAS  Google Scholar 

  • Aghaalipour E, Akbulut A, Güllü G (2020) Carbon dioxide capture with microalgae species in continuous gas-supplied closed cultivation systems. Biochem Eng J 163:107741

  • Ahmed SF, Mofijur M, Parisa TA, et al (2021) Progress and challenges of contaminate removal from wastewater using microalgae biomass. Chemosphere 131656

  • Aissi FZ, El Hadi D, Megateli S, Ketfi S (2021) Statistical optimization of pretreatment of orange processing waste using response surface methodology for bioethanol production. Energy Sources Part A Recover Util Environ Eff 1–15

  • Akubude VC, Nwaigwe KN, Dintwa E (2019) Production of biodiesel from microalgae via nanocatalyzed transesterification process: a review. Mater Sci Energy Technol 2:216–225

    Google Scholar 

  • Alami AH, Tawalbeh M, Alasad S et al (2021) Cultivation of Nannochloropsis algae for simultaneous biomass applications and carbon dioxide capture. Energy Sources Part A Recover Util Environ Eff 1:1–12

    Google Scholar 

  • Aliyu A, Lee JGM, Harvey AP (2021) Microalgae for biofuels: a review of thermochemical conversion processes and associated opportunities and challenges. Bioresour Technol Reports 100694

  • Alves JLF, da Silva Filho VF, Machado RAF, Marangoni C (2020) Ethanol enrichment from an aqueous stream using an innovative multi-tube falling film distillation column equipped with a biphasic thermosiphon. Process Saf Environ Prot 139:69–75

    Article  CAS  Google Scholar 

  • Anwar M, Lou S, Chen L et al (2019) Recent advancement and strategy on bio-hydrogen production from photosynthetic microalgae. Bioresour Technol 292:121972

    Article  CAS  PubMed  Google Scholar 

  • Aramkitphotha S, Tanatavikorn H, Yenyuak C, Vitidsant T (2019) Low sulfur fuel oil from blends of microalgae pyrolysis oil and used lubricating oil: properties and economic evaluation. Sustain Energy Technol Assessments 31:339–346. https://doi.org/10.1016/j.seta.2018.12.019

    Article  Google Scholar 

  • Aratboni HA, Rafiei N, Garcia-Granados R et al (2019) Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb Cell Fact 18:1–17

    Google Scholar 

  • Arun J, Gopinath KP, SundarRajan P et al (2020a) Hydrothermal liquefaction of Scenedesmus obliquus using a novel catalyst derived from clam shells: Solid residue as catalyst for hydrogen production. Bioresour Technol 310:123443. https://doi.org/10.1016/j.biortech.2020.123443

    Article  CAS  PubMed  Google Scholar 

  • Arun J, Gopinath KP, SundarRajan P et al (2020b) A conceptual review on microalgae biorefinery through thermochemical and biological pathways: bio-circular approach on carbon capture and wastewater treatment. Bioresour Technol Reports 11:100477. https://doi.org/10.1016/j.biteb.2020.100477

    Article  Google Scholar 

  • Arun J, Gopinath KP, SundarRajan P et al (2020c) Hydrothermal liquefaction and pyrolysis of Amphiroa fragilissima biomass: Comparative study on oxygen content and storage stability parameters of bio-oil. Bioresour Technol Rep 11:100465. https://doi.org/10.1016/j.biteb.2020.100465

    Article  Google Scholar 

  • Arvindnarayan S, Prabhu KKS, Shobana S et al (2017a) Upgrading of micro algal derived bio-fuels in thermochemical liquefaction path and its perspectives: a review. Int Biodeterior Biodegrad 119:260–272

    Article  CAS  Google Scholar 

  • Arvindnarayan S, Sivagnana Prabhu KK, Shobana S et al (2017b) Potential assessment of micro algal lipids: A renewable source of energy. J Energy Inst 90:431–440. https://doi.org/10.1016/j.joei.2016.03.006

    Article  CAS  Google Scholar 

  • Atabani AE, Tyagi VK, Fongaro G, et al (2021) Integrated biorefineries, circular bio-economy, and valorization of organic waste streams with respect to bio-products. 1

  • Azadi P, Brownbridge GPE, Mosbach S et al (2014) Production of biorenewable hydrogen and syngas via algae gasification: a sensitivity analysis. Energy Procedia 61:2767–2770. https://doi.org/10.1016/j.egypro.2014.12.302

    Article  CAS  Google Scholar 

  • Bagnoud-Velásquez M, Brandenberger M, Vogel F, Ludwig C (2014) Continuous catalytic hydrothermal gasification of algal biomass and case study on toxicity of aluminum as a step toward effluents recycling. Catal Today 223:35–43. https://doi.org/10.1016/j.cattod.2013.12.001

    Article  CAS  Google Scholar 

  • Baicha Z, Salar-García MJ, Ortiz-Martínez VM et al (2016) A critical review on microalgae as an alternative source for bioenergy production: a promising low cost substrate for microbial fuel cells. Fuel Process Technol 154:104–116. https://doi.org/10.1016/j.fuproc.2016.08.017

    Article  CAS  Google Scholar 

  • Balsalobre-Lorente D, Shahbaz M, Roubaud D, Farhani S (2018) How economic growth, renewable electricity and natural resources contribute to CO2 emissions? Energy Policy 113:356–367. https://doi.org/10.1016/j.enpol.2017.10.050

    Article  Google Scholar 

  • Bamary Z, Einali A (2021) Changes in carbon partitioning and pattern of antioxidant enzyme activity induced by arginine treatment in the green microalga dunaliella salina under long-term salinity. Microb Ecol 1:1–15

    Google Scholar 

  • Ban S, Lin W, Luo Z, Luo J (2019) Improving hydrogen production of Chlamydomonas reinhardtii by reducing chlorophyll content via atmospheric and room temperature plasma. Bioresour Technol 275:425–429. https://doi.org/10.1016/j.biortech.2018.12.062

    Article  CAS  PubMed  Google Scholar 

  • Banu JR, Kavitha S, Gunasekaran M, Kumar G (2020) Microalgae based biorefinery promoting circular bioeconomy-techno economic and life-cycle analysis. Bioresour Technol 302:1222

    Google Scholar 

  • Barry A, Wolfe A, English C, et al (2016) 2016 National algal biofuels technology review

  • Batista AP, Ambrosano L, Graça S et al (2015) Combining urban wastewater treatment with biohydrogen production – An integrated microalgae-based approach. Bioresour Technol 184:230–235. https://doi.org/10.1016/j.biortech.2014.10.064

    Article  CAS  PubMed  Google Scholar 

  • Beal CM, Hebner RE, Webber ME et al (2012) Comprehensive evaluation of algal biofuel production: experimental and target results. Energies 5:1943–1981. https://doi.org/10.3390/en5061943

    Article  CAS  Google Scholar 

  • Bellido C, Loureiro Pinto M, Coca M et al (2014) Acetone–butanol–ethanol (ABE) production by Clostridium beijerinckii from wheat straw hydrolysates: efficient use of penta and hexa carbohydrates. Bioresour Technol 167:198–205. https://doi.org/10.1016/j.biortech.2014.06.020

    Article  CAS  PubMed  Google Scholar 

  • Beneroso D, Bermúdez JM, Arenillas A, Menéndez JA (2013) Microwave pyrolysis of microalgae for high syngas production. Bioresour Technol 144:240–246. https://doi.org/10.1016/j.biortech.2013.06.102

    Article  CAS  PubMed  Google Scholar 

  • Bertsch P, Böcker L, Mathys A, Fischer P (2021) Proteins from microalgae for the stabilization of fluid interfaces, emulsions, and foams. Trends Food Sci Technol 108:326–342

    Article  CAS  Google Scholar 

  • Bhushan S, Kalra A, Simsek H et al (2020) Current trends and prospects in microalgae-based bioenergy production. J Environ Chem Eng 8:104025

    Article  CAS  Google Scholar 

  • Bibi F, Yasmin H, Jamal A, et al (2021) Deciphering role of technical bioprocess parameters for bioethanol production using microalgae. Saudi J Biol Sci

  • Bird MI, Wurster CM, de Paula Silva PH et al (2011) Algal biochar—production and properties. Bioresour Technol 102:1886–1891. https://doi.org/10.1016/j.biortech.2010.07.106

    Article  CAS  PubMed  Google Scholar 

  • Biswas B, Kumar A, Fernandes AC et al (2020) Solid base catalytic hydrothermal liquefaction of macroalgae: effects of process parameter on product yield and characterization. Bioresour Technol 307:123232. https://doi.org/10.1016/j.biortech.2020.123232

    Article  CAS  PubMed  Google Scholar 

  • Bolognesi S, Bernardi G, Callegari A et al (2021) Biochar production from sewage sludge and microalgae mixtures: properties, sustainability and possible role in circular economy. Biomass Convers Biorefinery 11:289–299

    Article  CAS  Google Scholar 

  • Borges FC, Xie Q, Min M et al (2014) Fast microwave-assisted pyrolysis of microalgae using microwave absorbent and HZSM-5 catalyst. Bioresour Technol 166:518–526

    Article  CAS  PubMed  Google Scholar 

  • Branco-Vieira M, Mata TM, Martins AA et al (2020) Economic analysis of microalgae biodiesel production in a small-scale facility. Energy Rep 6:325–332

    Article  Google Scholar 

  • Brar A, Kumar M, Soni T, et al (2021) Insights into the genetic and metabolic engineering approaches to enhance the competence of microalgae as biofuel resource: a review. Bioresour Technol 125597

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577. https://doi.org/10.1016/j.rser.2009.10.009

    Article  CAS  Google Scholar 

  • Brilman DWF, Drabik N, Wądrzyk M (2017) Hydrothermal co-liquefaction of microalgae, wood, and sugar beet pulp. Biomass Convers Biorefinery 7:445–454. https://doi.org/10.1007/s13399-017-0241-2

    Article  CAS  Google Scholar 

  • Brindhadevi K, Mathimani T, Rene ER et al (2021) Impact of cultivation conditions on the biomass and lipid in microalgae with an emphasis on biodiesel. Fuel 284:119058

    Article  CAS  Google Scholar 

  • Brown TM, Duan P, Savage PE (2010) Hydrothermal Liquefaction and Gasification of Nannochloropsis sp. Energy Fuels 24:3639–3646. https://doi.org/10.1021/ef100203u

    Article  CAS  Google Scholar 

  • Bwapwa JK, Anandraj A, Trois C (2017) Possibilities for conversion of microalgae oil into aviation fuel: A review. Renew Sustain Energy Rev 80:1345–1354. https://doi.org/10.1016/j.rser.2017.05.224

    Article  Google Scholar 

  • Cai W, Lai K, Liu C et al (2019) Promoting sustainability of manufacturing industry through the lean energy-saving and emission-reduction strategy. Sci Total Environ 665:23–32. https://doi.org/10.1016/j.scitotenv.2019.02.069

    Article  CAS  PubMed  Google Scholar 

  • Cantrell KB, Ducey T, Ro KS, Hunt PG (2008) Livestock waste-to-bioenergy generation opportunities. Bioresour Technol 99:7941–7953. https://doi.org/10.1016/j.biortech.2008.02.061

    Article  CAS  PubMed  Google Scholar 

  • Caporgno MP, Olkiewicz M, Torras C et al (2016) Effect of pre-treatments on the production of biofuels from Phaeodactylum tricornutum. J Environ Manag 177:240–246

    Article  CAS  Google Scholar 

  • CARD (2018) Prices for Ethanol, Corn, and Natural Gas

  • Chandra R, Iqbal HMN, Vishal G et al (2019) Algal biorefinery: a sustainable approach to valorize algal-based biomass towards multiple product recovery. Bioresour Technol 278:346–359. https://doi.org/10.1016/j.biortech.2019.01.104

    Article  CAS  PubMed  Google Scholar 

  • Chen C-Y, Yeh K-L, Aisyah R et al (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81. https://doi.org/10.1016/j.biortech.2010.06.159

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Qiu T, Rong J et al (2015) Microalgal biofuel revisited: an informatics-based analysis of developments to date and future prospects. Appl Energy 155:585–598. https://doi.org/10.1016/j.apenergy.2015.06.055

    Article  CAS  Google Scholar 

  • Chen W-H, Chong CT, Thomas S et al (2021) Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications. Energy Policy 154:112322

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen W-H, Nižetić S, Sirohi R et al (2022) Liquid hot water as sustainable biomass pretreatment technique for bioenergy production: a review. Bioresour Technol 344:1207. https://doi.org/10.1016/j.biortech.2021.126207

    Article  CAS  Google Scholar 

  • Chen W-T, Zhang Y, Zhang J et al (2014) Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil. Appl Energy 128:209–216. https://doi.org/10.1016/j.apenergy.2014.04.068

    Article  CAS  Google Scholar 

  • Cheng H-H, Whang L-M, Chan K-C et al (2015a) Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum. Bioresour Technol 184:379–385

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Guo H, Qiu Y et al (2020) Switchable solvent N, N, N′, N′-tetraethyl-1, 3-propanediamine was dissociated into cationic surfactant to promote cell disruption and lipid extraction from wet microalgae for biodiesel production. Bioresour Technol 312:123607. https://doi.org/10.1016/j.biortech.2020.123607

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Yang Z, Huang Y et al (2015b) Improving growth rate of microalgae in a 1191 m2 raceway pond to fix CO2 from flue gas in a coal-fired power plant. Bioresour Technol 190:235–241

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Zhou W, Gao C et al (2009) Biodiesel production from Jerusalem artichoke (Helianthus Tuberosus L. ) tuber by heterotrophic microalgae Chlorella protothecoides. J Chem Technol Biotechnol 84:777–781. https://doi.org/10.1002/jctb.2111

    Article  CAS  Google Scholar 

  • Chia SR, Ong HC, Chew KW et al (2018) Sustainable approaches for algae utilisation in bioenergy production. Renew Energy 129:838–852. https://doi.org/10.1016/j.renene.2017.04.001

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  • Chiu S-Y, Kao C-Y, Chen C-H et al (2008) Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol 99:3389–3396. https://doi.org/10.1016/j.biortech.2007.08.013

    Article  CAS  PubMed  Google Scholar 

  • Choi SP, Nguyen MT, Sim SJ (2010) Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol 101:5330–5336. https://doi.org/10.1016/j.biortech.2010.02.026

    Article  CAS  PubMed  Google Scholar 

  • Choudhary P, Malik A, Pant KK (2017) Mass-scale algal biomass production using algal biofilm reactor and conversion to energy and chemical precursors by hydropyrolysis. ACS Sustain Chem Eng 5:4234–4242. https://doi.org/10.1021/acssuschemeng.7b00233

    Article  CAS  Google Scholar 

  • Chowdhury H, Loganathan B (2019) Third-generation biofuels from microalgae: a review. Curr Opin Green Sustain Chem 20:39–44

    Article  Google Scholar 

  • Chowdhury H, Loganathan B, Mustary I, et al (2019) Algae for biofuels: the third generation of feedstock. In: Second and third generation of feedstocks. Elsevier, pp 323–344

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819. https://doi.org/10.1021/es902838n

    Article  CAS  PubMed  Google Scholar 

  • Clark JH, Deswarte F (2014) Introduction to chemicals from biomass. Wiley

    Google Scholar 

  • Constantino A, Rodrigues B, Leon R et al (2021) Alternative chemo-enzymatic hydrolysis strategy applied to different microalgae species for bioethanol production. Algal Res 56:102329

    Article  Google Scholar 

  • Correa DF, Beyer HL, Possingham HP et al (2019) Global mapping of cost-effective microalgal biofuel production areas with minimal environmental impact. GCB Bioenergy 11:914–929. https://doi.org/10.1111/gcbb.12619

    Article  Google Scholar 

  • Culaba AB, Ubando AT, Ching PML et al (2020) Biofuel from microalgae: sustainable pathways. Sustainability 12:8009. https://doi.org/10.3390/su12198009

    Article  Google Scholar 

  • Cunha C, Silva L, Paulo J et al (2020) Microalgal-based biopolymer for nano-and microplastic removal: a possible biosolution for wastewater treatment. Environ Pollut 263:114385

    Article  CAS  PubMed  Google Scholar 

  • Daroch M, Geng S, Wang G (2013) Recent advances in liquid biofuel production from algal feedstocks. Appl Energy 102:1371–1381. https://doi.org/10.1016/j.apenergy.2012.07.031

    Article  Google Scholar 

  • Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531. https://doi.org/10.1016/j.apenergy.2011.04.018

    Article  Google Scholar 

  • De Bhowmick G, Sarmah AK, Sen R (2019) Zero-waste algal biorefinery for bioenergy and biochar: a green leap towards achieving energy and environmental sustainability. Sci Total Environ 650:2467–2482. https://doi.org/10.1016/j.scitotenv.2018.10.002

    Article  CAS  PubMed  Google Scholar 

  • de Farias Silva CE, Bertucco A (2016) Bioethanol from microalgae and cyanobacteria: a review and technological outlook. Process Biochem 51:1833–1842. https://doi.org/10.1016/j.procbio.2016.02.016

    Article  CAS  Google Scholar 

  • De Morais MG, Costa JAV (2007) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445

    Article  PubMed  Google Scholar 

  • Deknock A, De Troyer N, Houbraken M et al (2019) Distribution of agricultural pesticides in the freshwater environment of the Guayas river basin (Ecuador). Sci Total Environ 646:996–1008

    Article  CAS  PubMed  Google Scholar 

  • Derakhshandeh M, Atici T, Tezcan Un U (2021) Evaluation of wild-type microalgae species biomass as carbon dioxide sink and renewable energy resource. Waste Biomass Valorization 12:105–121

    Article  CAS  Google Scholar 

  • Devadas VV, Khoo KS, Chia WY et al (2021) Algae biopolymer towards sustainable circular economy. Bioresour Technol 1:124702

    Article  Google Scholar 

  • Díaz-Rey MR, Cortés-Reyes M, Herrera C et al (2015) Hydrogen-rich gas production from algae-biomass by low temperature catalytic gasification. Catal Today 257:177–184. https://doi.org/10.1016/j.cattod.2014.04.035

    Article  CAS  Google Scholar 

  • Dickinson S, Mientus M, Frey D et al (2017) A review of biodiesel production from microalgae. Clean Technol Environ Policy 19:637–668

    Article  CAS  Google Scholar 

  • Ding GT, Yasin NHM, Takriff MS et al (2020) Phycoremediation of palm oil mill effluent (POME) and CO2 fixation by locally isolated microalgae: Chlorella sorokiniana UKM2, Coelastrella sp. UKM4 and Chlorella pyrenoidosa UKM7. J Water Process Eng 35:101202

    Article  Google Scholar 

  • Draaisma RB, Wijffels RH, Slegers P et al (2013) Food commodities from microalgae. Curr Opin Biotechnol 24:169–177. https://doi.org/10.1016/j.copbio.2012.09.012

    Article  CAS  PubMed  Google Scholar 

  • Dragone G, Fernandes BD, Abreu AP et al (2011) Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy 88:3331–3335. https://doi.org/10.1016/j.apenergy.2011.03.012

    Article  CAS  Google Scholar 

  • Efremenko EN, Nikolskaya AB, Lyagin IV et al (2012) Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells. Bioresour Technol 114:342–348

    Article  CAS  PubMed  Google Scholar 

  • El-Mekkawi SA, Abdo SM, Samhan FA, Ali GH (2019) Optimization of some fermentation conditions for bioethanol production from microalgae using response surface method. Bull Natl Res Cent 43:1–8

    Article  Google Scholar 

  • El Semary NAH (2020) Algae and Fishes: Benefits and Hazards. Climate change impacts on agriculture and food security in Egypt. Springer, Cham, pp 465–479

    Chapter  Google Scholar 

  • Elisabeth B, Rayen F, Behnam T (2021) Microalgae culture quality indicators: a review. Crit Rev Biotechnol 41:457–473

    Article  CAS  PubMed  Google Scholar 

  • Ellis JT, Hengge NN, Sims RC, Miller CD (2012) Acetone, butanol, and ethanol production from wastewater algae. Bioresour Technol 111:491–495. https://doi.org/10.1016/j.biortech.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  • Eroglu E, Melis A (2011) Photobiological hydrogen production: recent advances and state of the art. Bioresour Technol 102:8403–8413. https://doi.org/10.1016/j.biortech.2011.03.026

    Article  CAS  PubMed  Google Scholar 

  • Eroglu E, Melis A (2016) Microalgal hydrogen production research. Int J Hydrogen Energy 41:12772–12798. https://doi.org/10.1016/j.ijhydene.2016.05.115

    Article  CAS  Google Scholar 

  • Fernández-Acero FJ, Amil-Ruiz F, Durán-Peña MJ et al (2019) Valorisation of the microalgae Nannochloropsis gaditana biomass by proteomic approach in the context of circular economy. J Proteomics 193:239–242

    Article  PubMed  Google Scholar 

  • Fernández FGA, Reis A, Wijffels RH et al (2021) The role of microalgae in the bioeconomy. N Biotechnol 61:99–107

    Article  PubMed  Google Scholar 

  • Figueroa-Torres GM, Mahmood WMAW, Pittman JK, Theodoropoulos C (2020) Microalgal biomass as a biorefinery platform for biobutanol and biodiesel production. Biochem Eng J 153:107396

    Article  CAS  Google Scholar 

  • Gan SY, Maggs CA (2017) Random mutagenesis and precise gene editing technologies: applications in algal crop improvement and functional genomics. Eur J Phycol 52:466–481

    Article  CAS  Google Scholar 

  • Gao C, Zhai Y, Ding Y, Wu Q (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy 87:756–761. https://doi.org/10.1016/j.apenergy.2009.09.006

    Article  CAS  Google Scholar 

  • Garoma T, Nguyen D (2016) Anaerobic Co-Digestion of Microalgae Scenedesmus sp. and TWAS for Biomethane Production. Water Environ Res 88:13–20

    Article  CAS  PubMed  Google Scholar 

  • Gasparatos A, Stromberg P, Takeuchi K (2013) Sustainability impacts of first-generation biofuels. Anim Front 3:12–26. https://doi.org/10.2527/af.2013-0011

    Article  Google Scholar 

  • Gholkar P, Shastri Y, Tanksale A (2021) Renewable hydrogen and methane production from microalgae: A techno-economic and life cycle assessment study. J Clean Prod 279:123726

    Article  CAS  Google Scholar 

  • Gholkar P, Shastri Y, Tanksale A (2019) Catalytic reactive flash volatilisation of microalgae to produce hydrogen or methane-rich syngas. Appl Catal B Environ 251:326–334

    Article  CAS  Google Scholar 

  • Ghosh S, Banerjee S, Das D (2017) Process intensification of biodiesel production from Chlorella sp. MJ 11/11 by single step transesterification. Algal Res 27:12–20. https://doi.org/10.1016/j.algal.2017.08.021

    Article  Google Scholar 

  • Goh BHH, Ong HC, Cheah MY et al (2019) Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review. Renew Sustain Energy Rev 107:59–74. https://doi.org/10.1016/j.rser.2019.02.012

    Article  CAS  Google Scholar 

  • Gonzalez-Fernandez C, Muñoz R (2017) Microalgae-based biofuels and bioproducts. United Kingdom Woodhead Publ

    Google Scholar 

  • Goswami RK, Mehariya S, Verma P et al (2021) Microalgae-based biorefineries for sustainable resource recovery from wastewater. J Water Process Eng 40:101747

    Article  Google Scholar 

  • Guccione A, Biondi N, Sampietro G et al (2014) Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a Green Wall Panel photobioreactor. Biotechnol Biofuels 7:84. https://doi.org/10.1186/1754-6834-7-84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guldhe A, Singh P, Ansari FA et al (2017) Biodiesel synthesis from microalgal lipids using tungstated zirconia as a heterogeneous acid catalyst and its comparison with homogeneous acid and enzyme catalysts. Fuel 187:180–188

    Article  CAS  Google Scholar 

  • Guldhe A, Singh P, Renuka N, Bux F (2019) Biodiesel synthesis from wastewater grown microalgal feedstock using enzymatic conversion: a greener approach. Fuel 237:1112–1118

    Article  CAS  Google Scholar 

  • Gumbytė M, Makareviciene V, Skorupskaite V et al (2018) Enzymatic microalgae oil transesterification with ethanol in mineral diesel fuel media. J Renew Sustain Energy 10:13105

    Article  Google Scholar 

  • Hariskos I, Posten C (2014) Biorefinery of microalgae - opportunities and constraints for different production scenarios. Biotechnol J 9:739–752. https://doi.org/10.1002/biot.201300142

    Article  CAS  PubMed  Google Scholar 

  • He S, Fan X, Luo S et al (2017) Enhanced the energy outcomes from microalgal biomass by the novel biopretreatment. Energy Convers Manag 135:291–296. https://doi.org/10.1016/j.enconman.2016.12.049

    Article  CAS  Google Scholar 

  • Hemalatha M, Sarkar O, Venkata Mohan S (2019a) Self-sustainable azolla-biorefinery platform for valorization of biobased products with circular-cascading design. Chem Eng J 373:1042–1053. https://doi.org/10.1016/j.cej.2019.04.013

    Article  CAS  Google Scholar 

  • Hemalatha M, Sravan JS, Min B, Venkata Mohan S (2019b) Microalgae-biorefinery with cascading resource recovery design associated to dairy wastewater treatment. Bioresour Technol 284:424–429. https://doi.org/10.1016/j.biortech.2019.03.106

    Article  CAS  PubMed  Google Scholar 

  • Hena S, Gutierrez L, Croue J-P (2021) Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: a review. J Hazard Mater 403:124041

    Article  CAS  PubMed  Google Scholar 

  • Ho S-H, Chen C-Y, Lee D-J, Chang J-S (2011) Perspectives on microalgal CO2-emission mitigation systems—a review. Biotechnol Adv 29:189–198

    Article  CAS  PubMed  Google Scholar 

  • Ho S-H, Zhang C, Tao F, et al (2020) Microalgal torrefaction for solid biofuel production. Trends Biotechnol

  • Hoang AT, Huang Z, Nižetić S, et al (2021a) Characteristics of hydrogen production from steam gasification of plant-originated lignocellulosic biomass and its prospects in Vietnam. Int J Hydrogen Energy

  • Hoang AT, Ong HC, Fattah IMR et al (2021b) Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Process Technol 223:1097

    Article  Google Scholar 

  • Hoang AT, Pandey A, Huang Z, et al (2022) Catalyst-based synthesis of 2, 5-dimethylfuran from carbohydrates as a sustainable biofuel production route. ACS Sustain Chem Eng

  • Hoang AT, Pham VV (2021) 2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines. Renew Sustain Energy Rev 148:111265

    Article  Google Scholar 

  • Hoang AT, Pham VV, Nguyen XP (2021c) Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process. J Clean Prod 305:127161. https://doi.org/10.1016/j.jclepro.2021.127161

    Article  Google Scholar 

  • Hoang AT, Tabatabaei M, Aghbashlo M et al (2020) Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: a review. Renew Sustain Energy Rev 135:110204. https://doi.org/10.1016/j.rser.2020.110204

    Article  CAS  Google Scholar 

  • Hong W, Chen J, Ding Q et al (2021) Efficient thermochemical liquefaction of microalgae Haematococcus pluvialis for production of high quality biocrude with high selectivity over Fe/montmorillonite catalyst. J Energy Inst 97:73–79

    Article  CAS  Google Scholar 

  • Hong Y, Chen W, Luo X et al (2017) Microwave-enhanced pyrolysis of macroalgae and microalgae for syngas production. Bioresour Technol 237:47–56

    Article  CAS  PubMed  Google Scholar 

  • Hossain N, Zaini J, Mahlia TMI, Azad AK (2019) Elemental, morphological and thermal analysis of mixed microalgae species from drain water. Renew Energy 131:617–624. https://doi.org/10.1016/j.renene.2018.07.082

    Article  CAS  Google Scholar 

  • Howlader MS, French WT (2020) Pretreatment and lipid extraction from wet microalgae: challenges, potential, and application for industrial-scale application. In: Microalgae biotechnology for food, health and high value products. Springer, pp 469–483

  • Hu S, Barati B, Odey EA et al (2020) Experimental study and economic feasibility analysis on the production of bio-oil by catalytic cracking of three kinds of microalgae. J Anal Appl Pyrolysis 149:104835

    Article  CAS  Google Scholar 

  • Huang B, Mimouni V, Lukomska E et al (2020) Carbon partitioning and lipid remodeling during phosphorus and nitrogen starvation in the marine microalga Diacronema lutheri (Haptophyta). J Phycol 56:908–922

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim AFM, Dandamudi KPR, Deng S, Lin JYS (2020) Pyrolysis of hydrothermal liquefaction algal biochar for hydrogen production in a membrane reactor. Fuel 265:116935

    Article  CAS  Google Scholar 

  • Javed F, Aslam M, Rashid N et al (2019) Microalgae-based biofuels, resource recovery and wastewater treatment: a pathway towards sustainable biorefinery. Fuel 255:115826

    Article  CAS  Google Scholar 

  • Jehlee A, Rodjaroen S, Waewsak J et al (2019) Improvement of biohythane production from Chlorella sp. TISTR 8411 biomass by co-digestion with organic wastes in a two-stage fermentation. Int J Hydrogen Energy 44:17238–17247

    Article  CAS  Google Scholar 

  • Jena U, Das KC (2011) Comparative Evaluation of Thermochemical Liquefaction and Pyrolysis for Bio-Oil Production from Microalgae. Energy Fuels 25:5472–5482. https://doi.org/10.1021/ef201373m

    Article  CAS  Google Scholar 

  • Jiang L, Luo S, Fan X et al (2011) Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl Energy 88:3336–3341. https://doi.org/10.1016/j.apenergy.2011.03.043

    Article  CAS  Google Scholar 

  • Jin B, Duan P, Zhang C et al (2014) Non-catalytic liquefaction of microalgae in sub-and supercritical acetone. Chem Eng J 254:384–392. https://doi.org/10.1016/j.cej.2014.05.137

    Article  CAS  Google Scholar 

  • Jin X, Gong S, Chen Z et al (2021) Potential microalgal strains for converting flue gas CO2 into biomass. J Appl Phycol 33:47–55

    Article  CAS  Google Scholar 

  • Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112. https://doi.org/10.1016/j.biortech.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  • Kadier A, Kalil MS, Chandrasekhar K et al (2018) Surpassing the current limitations of high purity H2 production in microbial electrolysis cell (MECs): strategies for inhibiting growth of methanogens. Bioelectrochemistry 119:211–219. https://doi.org/10.1016/j.bioelechem.2017.09.014

    Article  CAS  PubMed  Google Scholar 

  • Kakarla R, Min B (2019) Sustainable electricity generation and ammonium removal by microbial fuel cell with a microalgae assisted cathode at various environmental conditions. Bioresour Technol 284:161–167

    Article  CAS  PubMed  Google Scholar 

  • Karimi M (2017) Exergy-based optimization of direct conversion of microalgae biomass to biodiesel. J Clean Prod 141:50–55. https://doi.org/10.1016/j.jclepro.2016.09.032

    Article  CAS  Google Scholar 

  • Karthikeyan S, Dharma Prabhakaran T, Prathima A (2018) Environment effect of La2O3 nano-additives on microalgae-biodiesel fueled CRDI engine with conventional diesel. Energy Sources Part A Recover Util Environ Eff 40:179–185

    Article  CAS  Google Scholar 

  • Kavitha S, Schikaran M, Kannah RY et al (2019) Nanoparticle induced biological disintegration: a new phase separated pretreatment strategy on microalgal biomass for profitable biomethane recovery. Bioresour Technol 289:1224

    Article  Google Scholar 

  • Kazemi Shariat Panahi H, Dehhaghi M, Aghbashlo M et al (2019a) Shifting fuel feedstock from oil wells to sea: Iran outlook and potential for biofuel production from brown macroalgae (ochrophyta; phaeophyceae). Renew Sustain Energy Rev 112:626–642. https://doi.org/10.1016/j.rser.2019.06.023

    Article  Google Scholar 

  • Kazemi Shariat Panahi H, Tabatabaei M, Aghbashlo M et al (2019b) Recent updates on the production and upgrading of bio-crude oil from microalgae. Bioresour Technol Reports 7:100216. https://doi.org/10.1016/j.biteb.2019.100216

    Article  Google Scholar 

  • Khan S, Siddique R, Sajjad W et al (2017) Biodiesel production from algae to overcome the energy crisis. Hayati J Biosci 24:163–167

    Article  Google Scholar 

  • Kholssi R, Ramos PV, Marks EAN et al (2021) 2Biotechnological uses of microalgae: a review on the state of the art and challenges for the circular economy. Biocatal Agric Biotechnol 1:102114

    Article  Google Scholar 

  • Khoo KS, Chew KW, Yew GY et al (2020) Recent advances in downstream processing of microalgae lipid recovery for biofuel production. Bioresour Technol 304:122996

    Article  CAS  PubMed  Google Scholar 

  • Kim B-H, Ramanan R, Cho D-H et al (2014) Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenerg 69:95–105. https://doi.org/10.1016/j.biombioe.2014.07.015

    Article  CAS  Google Scholar 

  • Kim B, Im H, Lee JW (2015) In situ transesterification of highly wet microalgae using hydrochloric acid. Bioresour Technol 185:421–425. https://doi.org/10.1016/j.biortech.2015.02.092

    Article  CAS  PubMed  Google Scholar 

  • Kohansal K, Tavasoli A, Bozorg A (2019) Using a hybrid-like supported catalyst to improve green fuel production through hydrothermal liquefaction of Scenedesmus obliquus microalgae. Bioresour Technol 277:136–147. https://doi.org/10.1016/j.biortech.2018.12.081

    Article  CAS  PubMed  Google Scholar 

  • Kong Q, Li L, Martinez B et al (2010) Culture of Microalgae Chlamydomonas reinhardtii in Wastewater for Biomass Feedstock Production. Appl Biochem Biotechnol 160:9–18. https://doi.org/10.1007/s12010-009-8670-4

    Article  CAS  PubMed  Google Scholar 

  • Koyande AK, Show P-L, Guo R et al (2019) Bio-processing of algal bio-refinery: a review on current advances and future perspectives. Bioengineered 10:574–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar BR, Mathimani T, Sudhakar MP et al (2021a) A state of the art review on the cultivation of algae for energy and other valuable products: application, challenges, and opportunities. Renew Sustain Energy Rev 138:1149

    Article  Google Scholar 

  • Kumar G, Zhen G, Sivagurunathan P et al (2016) Biogenic H2 production from mixed microalgae biomass: impact of pH control and methanogenic inhibitor (BESA) addition. Biofuel Res J 3:470

    Article  CAS  Google Scholar 

  • Kumar K, Dasgupta CN, Nayak B et al (2011) Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour Technol 102:4945–4953. https://doi.org/10.1016/j.biortech.2011.01.054

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Sun Y, Rathour R et al (2020) Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. Sci Total Environ 716:137116. https://doi.org/10.1016/j.scitotenv.2020.137116

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Sharma N, Jaiswal KK et al (2021b) Microalgae with a truncated light-harvesting antenna to maximize photosynthetic efficiency and biomass productivity: Recent advances and current challenges. Process Biochem 104:83–91

    Article  CAS  Google Scholar 

  • Kusmayadi A, Leong YK, Yen H-W et al (2021) Microalgae as sustainable food and feed sources for animals and humans–Biotechnological and environmental aspects. Chemosphere 271:129800

    Article  CAS  PubMed  Google Scholar 

  • Lakshmikandan M, Murugesan AG, Wang S et al (2020) Sustainable biomass production under CO2 conditions and effective wet microalgae lipid extraction for biodiesel production. J Clean Prod 247:119398

    Article  CAS  Google Scholar 

  • Lee OK, Seong DH, Lee CG, Lee EY (2015) Sustainable production of liquid biofuels from renewable microalgae biomass. J Ind Eng Chem 29:24–31. https://doi.org/10.1016/j.jiec.2015.04.016

    Article  CAS  Google Scholar 

  • Li H, Liu Z, Zhang Y et al (2014) Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Bioresour Technol 154:322–329. https://doi.org/10.1016/j.biortech.2013.12.074

    Article  CAS  PubMed  Google Scholar 

  • Li S, Ji L, Chen C et al (2020) Efficient accumulation of high-value bioactive substances by carbon to nitrogen ratio regulation in marine microalgae Porphyridium purpureum. Bioresour Technol 309:123362

    Article  CAS  PubMed  Google Scholar 

  • Li T, Hu J, Zhu L (2021) Self-flocculation as an efficient method to harvest microalgae: a mini-review. Water 13:2585

    Article  Google Scholar 

  • Li Y, Horsman M, Wu N et al (2008) Biofuels from microalgae. Biotechnol Prog. https://doi.org/10.1021/bp070371k

    Article  PubMed  Google Scholar 

  • Lima MGB (2021) The politics of bioeconomy and sustainability: lessons from biofuel governance, policies and production strategies in the emerging world. Springer

  • Lin R, Deng C, Ding L et al (2019) Improving gaseous biofuel production from seaweed Saccharina latissima: the effect of hydrothermal pretreatment on energy efficiency. Energy Convers Manag 196:1385–1394

    Article  CAS  Google Scholar 

  • Liu B, Wang Z, Feng L (2021) Effects of reaction parameter on catalytic hydrothermal liquefaction of microalgae into hydrocarbon rich bio-oil. J Energy Inst 94:22–28

    Article  CAS  Google Scholar 

  • Liu C-H, Chang C-Y, Liao Q et al (2013) Biohydrogen production by a novel integration of dark fermentation and mixotrophic microalgae cultivation. Int J Hydrogen Energy 38:15807–15814. https://doi.org/10.1016/j.ijhydene.2013.05.104

    Article  CAS  Google Scholar 

  • Liu G, Liao Y, Wu Y et al (2017) Characteristics of microalgae gasification through chemical looping in the presence of steam. Int J Hydrogen Energy 42:22730–22742. https://doi.org/10.1016/j.ijhydene.2017.07.173

    Article  CAS  Google Scholar 

  • Liu G, Liao Y, Wu Y, Ma X (2019a) Evaluation of Sr-substituted Ca2Fe2O5 as oxygen carrier in microalgae chemical looping gasification. Fuel Process Technol 191:93–103. https://doi.org/10.1016/j.fuproc.2019.03.019

    Article  CAS  Google Scholar 

  • Liu H, Chen Y, Yang H et al (2019b) Hydrothermal carbonization of natural microalgae containing a high ash content. Fuel 249:441–448. https://doi.org/10.1016/j.fuel.2019.03.004

    Article  CAS  Google Scholar 

  • Liu H, Chen Y, Yang H et al (2020a) Conversion of high-ash microalgae through hydrothermal liquefaction. Sustain Energy Fuels 4:2782–2791. https://doi.org/10.1039/C9SE01114E

    Article  CAS  Google Scholar 

  • Liu H, Zhang Z, Zhang H et al (2020b) Evaluation of hydrogen yield potential from Chlorella by photo-fermentation under diverse substrate concentration and enzyme loading. Bioresour Technol 303:1256

    Article  Google Scholar 

  • López-González D, Fernandez-Lopez M, Valverde JL, Sanchez-Silva L (2014) Comparison of the steam gasification performance of three species of microalgae by thermogravimetric–mass spectrometric analysis. Fuel 134:1–10. https://doi.org/10.1016/j.fuel.2014.05.051

    Article  CAS  Google Scholar 

  • Lozano P, Bernal JM, Gómez C et al (2020) Green biocatalytic synthesis of biodiesel from microalgae in one-pot systems based on sponge-like ionic liquids. Catal Today 346:87–92

    Article  CAS  Google Scholar 

  • Lu D, Zhang XJ (2016) Biogas production from anaerobic codigestion of microalgae and septic sludge. J Environ Eng 142:4016049

    Article  Google Scholar 

  • Lu Z, Loftus S, Sha J et al (2020) Water reuse for sustainable microalgae cultivation: current knowledge and future directions. Resour Conserv Recycl 161:104975

    Article  Google Scholar 

  • Luiza Astolfi A, Rempel A, Cavanhi VAF et al (2020) Simultaneous saccharification and fermentation of Spirulina sp and corn starch for the production of bioethanol and obtaining biopeptides with high antioxidant activity. Bioresour Technol 301:1298. https://doi.org/10.1016/j.biortech.2019.122698

    Article  CAS  Google Scholar 

  • Ly HV, Choi JH, Woo HC et al (2019) Upgrading bio-oil by catalytic fast pyrolysis of acid-washed Saccharina japonica alga in a fluidized-bed reactor. Renew Energy 133:11–22. https://doi.org/10.1016/j.renene.2018.09.103

    Article  CAS  Google Scholar 

  • Ly HV, Kim S-S, Choi JH et al (2016) Fast pyrolysis of Saccharina japonica alga in a fixed-bed reactor for bio-oil production. Energy Convers Manag 122:526–534

    Article  CAS  Google Scholar 

  • Ma C, Geng J, Zhang D, Ning X (2020) Non-catalytic and catalytic pyrolysis of Ulva prolifera macroalgae for production of quality bio-oil. J Energy Inst 93:303–311. https://doi.org/10.1016/j.joei.2019.03.001

    Article  CAS  Google Scholar 

  • Ma Y, Liu S, Wang Y et al (2019) Direct biodiesel production from wet microalgae assisted by radio frequency heating. Fuel 256:115994. https://doi.org/10.1016/j.fuel.2019.115994

    Article  CAS  Google Scholar 

  • Mahdy A, Ballesteros M, González-Fernández C (2016a) Enzymatic pretreatment of Chlorella vulgaris for biogas production: influence of urban wastewater as a sole nutrient source on macromolecular profile and biocatalyst efficiency. Bioresour Technol 199:319–325

    Article  CAS  PubMed  Google Scholar 

  • Mahdy A, Mendez L, Tomás-Pejó E et al (2016b) Influence of enzymatic hydrolysis on the biochemical methane potential of Chlorella vulgaris and Scenedesmus sp. J Chem Technol Biotechnol 91:1299–1305

    Article  CAS  Google Scholar 

  • Makareviciene V, Gumbyte M, Skorupskaite V, Sendzikiene E (2017) Biodiesel fuel production by enzymatic microalgae oil transesterification with ethanol. J Renew Sustain Energy 9:23101

    Article  Google Scholar 

  • Malekghasemi S, Kariminia H-R, Plechkova NK, Ward VCA (2021) Direct transesterification of wet microalgae to biodiesel using phosphonium carboxylate ionic liquid catalysts. Biomass Bioenerg 150:106126

    Article  CAS  Google Scholar 

  • Mandik YI, Cheirsilp B, Srinuanpan S et al (2020) Zero-waste biorefinery of oleaginous microalgae as promising sources of biofuels and biochemicals through direct transesterification and acid hydrolysis. Process Biochem 95:214–222. https://doi.org/10.1016/j.procbio.2020.02.011

    Article  CAS  Google Scholar 

  • Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Appl Energy 88:3389–3401. https://doi.org/10.1016/j.apenergy.2010.12.042

    Article  CAS  Google Scholar 

  • Mathews JA (2008) Carbon-negative biofuels. Energy Policy 36:940–945. https://doi.org/10.1016/j.enpol.2007.11.029

    Article  Google Scholar 

  • Mathimani T, Mallick N (2018) A comprehensive review on harvesting of microalgae for biodiesel—key challenges and future directions. Renew Sustain Energy Rev 91:1103–1120. https://doi.org/10.1016/j.rser.2018.04.083

    Article  CAS  Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83:55–63. https://doi.org/10.1016/S0960-8524(01)00120-1

    Article  CAS  PubMed  Google Scholar 

  • McNeff CV, McNeff LC, Yan B et al (2008) A continuous catalytic system for biodiesel production. Appl Catal A Gen 343:39–48. https://doi.org/10.1016/j.apcata.2008.03.019

    Article  CAS  Google Scholar 

  • Mekuto L, Olowolafe AVA, Huberts R et al (2020) Microalgae as a biocathode and feedstock in anode chamber for a selfsustainable microbial fuel cell technology: a review. South Afr J Chem Eng 31:7–16

    Article  Google Scholar 

  • Mimouni V, Couzinet-Mossion A, Ulmann L, Wielgosz-Collin G (2018) Lipids from microalgae. In: Microalgae in health and disease prevention. Elsevier, pp 109–131

  • Min KJ, Oh DY, Park KY (2021) Pilot-scale cultivation of water-net in secondary effluent using an open pond raceway for nutrient removal and bioethanol production. Chemosphere 277:130129

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Roy M, Mohanty K (2019) Microalgal bioenergy production under zero-waste biorefinery approach: recent advances and future perspectives. Bioresour Technol 292:122008

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Dubey A, Prajapti SK (2017) Algal biomass pretreatment for improved biofuel production. Algal Biofuels. Springer International Publishing, Cham, pp 259–280

    Chapter  Google Scholar 

  • Morseletto P (2020) Targets for a circular economy. Resour Conserv Recycl 153:1053

    Article  Google Scholar 

  • Moshood TD, Nawanir G, Mahmud F (2021) Microalgae biofuels production: a systematic review on socioeconomic prospects of microalgae biofuels and policy implications. Environ Challenges 100207

  • MT V, H V, M J, et al (2022) Microalgae-based carbon capture and utilisation: A critical review on current system developments and biomass utilization. Crit Rev Environ Sci Technol

  • Mu D, Min M, Krohn B et al (2014) Life cycle environmental impacts of wastewater-based Algal biofuels. Environ Sci Technol 48:11696–11704. https://doi.org/10.1021/es5027689

    Article  CAS  PubMed  Google Scholar 

  • Narula V, Khan MF, Negi A et al (2017) Low temperature optimization of biodiesel production from algal oil using CaO and CaO/Al2O3 as catalyst by the application of response surface methodology. Energy 140:879–884

    Article  CAS  Google Scholar 

  • Nayak SK, Mishra PC (2016) Application of Nagchampa biodiesel and rice husk gas as fuel. Energy Sources Part A Recover Util Environ Eff 38:2024–2030. https://doi.org/10.1080/15567036.2015.1017672

    Article  CAS  Google Scholar 

  • Ndayisenga F, Yu Z, Yu Y et al (2018) Bioelectricity generation using microalgal biomass as electron donor in a bio-anode microbial fuel cell. Bioresour Technol 270:286–293

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TT, Lam MK, Cheng YW et al (2021) Reaction kinetic and thermodynamics studies for in-situ transesterification of wet microalgae paste to biodiesel. Chem Eng Res Des 169:250–264

    Article  CAS  Google Scholar 

  • Nurdiawati A, Zaini IN, Irhamna AR et al (2019) Novel configuration of supercritical water gasification and chemical looping for highly-efficient hydrogen production from microalgae. Renew Sustain Energy Rev 112:369–381

    Article  CAS  Google Scholar 

  • Olsson J, Forkman T, Gentili FG et al (2018) Anaerobic co-digestion of sludge and microalgae grown in municipal wastewater–a feasibility study. Water Sci Technol 77:682–694

    Article  CAS  PubMed  Google Scholar 

  • Onay M (2020) The effects of indole-3-acetic acid and hydrogen peroxide on Chlorella zofingiensis CCALA 944 for bio-butanol production. Fuel 273:117795

    Article  CAS  Google Scholar 

  • Onay M (2018) Investigation of biobutanol efficiency of Chlorella sp. cultivated in municipal wastewater. J Geosci Environ Prot 6:40–50

    Google Scholar 

  • Oncel SS (2013) Microalgae for a macroenergy world. Renew Sustain Energy Rev 26:241–264

    Article  Google Scholar 

  • Onwudili JA, Lea-Langton AR, Ross AB, Williams PT (2013) Catalytic hydrothermal gasification of algae for hydrogen production: composition of reaction products and potential for nutrient recycling. Bioresour Technol 127:72–80. https://doi.org/10.1016/j.biortech.2012.10.020

    Article  CAS  PubMed  Google Scholar 

  • Ortigueira J, Alves L, Gouveia L, Moura P (2015) Third generation biohydrogen production by Clostridium butyricum and adapted mixed cultures from Scenedesmus obliquus microalga biomass. Fuel 153:128–134. https://doi.org/10.1016/j.fuel.2015.02.093

    Article  CAS  Google Scholar 

  • Ortiz-Martínez VM, Andreo-Martinez P, Garcia-Martinez N et al (2019) Approach to biodiesel production from microalgae under supercritical conditions by the PRISMA method. Fuel Process Technol 191:211–222

    Article  Google Scholar 

  • Özçimen D, Inan B (2015) An Overview of Bioethanol Production From Algae. In: Biofuels - Status and Perspective. InTech

  • Özçimen D, Koçer AT, İnan B, Özer T (2020) Bioethanol production from microalgae. In: Handbook of Microalgae-Based Processes and Products. Elsevier, pp 373–389

  • Pachapur PK, Pachapur VL, Brar SK, et al (2020) Food Security and Sustainability. In: Sustainability. Wiley, pp 357–374

  • Papathoti NK, Laemchiab K, Megavath VS, et al (2021) Augmented ethanol production from alkali-assisted hydrothermal pretreated cassava peel waste. Energy Sources, Part A Recover Util Environ Eff 1–11

  • Park J, Kim B, Chang YK, Lee JW (2017) Wet in situ transesterification of microalgae using ethyl acetate as a co-solvent and reactant. Bioresour Technol 230:8–14. https://doi.org/10.1016/j.biortech.2017.01.027

    Article  CAS  PubMed  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42. https://doi.org/10.1016/j.biortech.2010.06.158

    Article  CAS  PubMed  Google Scholar 

  • Phanduang O, Lunprom S, Salakkam A et al (2019) Improvement in energy recovery from Chlorella sp. biomass by integrated dark-photo biohydrogen production and dark fermentation-anaerobic digestion processes. Int J Hydrogen Energy 44:23899–23911

    Article  CAS  Google Scholar 

  • Phwan CK, Chew KW, Sebayang AH et al (2019) Effects of acids pre-treatment on the microbial fermentation process for bioethanol production from microalgae. Biotechnol Biofuels 12:1–8

    Article  CAS  Google Scholar 

  • Piligaev AV, Sorokina KN, Bryanskaya AV et al (2015) Isolation of prospective microalgal strains with high saturated fatty acid content for biofuel production. Algal Res 12:368–376. https://doi.org/10.1016/j.algal.2015.08.026

    Article  Google Scholar 

  • Pourkarimi S, Hallajisani A, Alizadehdakhel A, Nouralishahi A (2019) Biofuel production through micro- and macroalgae pyrolysis—a review of pyrolysis methods and process parameters. J Anal Appl Pyrolysis 142:104599. https://doi.org/10.1016/j.jaap.2019.04.015

    Article  CAS  Google Scholar 

  • Qu W, Show PL, Hasunuma T, Ho S-H (2020) Optimizing real swine wastewater treatment efficiency and carbohydrate productivity of newly microalga Chlamydomonas sp QWY37 used for cell-displayed bioethanol production. Bioresour Technol 305:123072

    Article  CAS  PubMed  Google Scholar 

  • Quinn JC, Hanif A, Sharvelle S, Bradley TH (2014) Microalgae to biofuels: Life cycle impacts of methane production of anaerobically digested lipid extracted algae. Bioresour Technol 171:37–43. https://doi.org/10.1016/j.biortech.2014.08.037

    Article  CAS  PubMed  Google Scholar 

  • Raheem A, Wan Azlina WAKG, Taufiq Yap YH et al (2015) Thermochemical conversion of microalgal biomass for biofuel production. Renew Sustain Energy Rev 49:990–999. https://doi.org/10.1016/j.rser.2015.04.186

    Article  CAS  Google Scholar 

  • Rajak U, Nashine P, Verma TN (2019) Assessment of diesel engine performance using spirulina microalgae biodiesel. Energy 166:1025–1036

    Article  CAS  Google Scholar 

  • Ramola B, Kumar V, Nanda M et al (2019) Evaluation, comparison of different solvent extraction, cell disruption methods and hydrothermal liquefaction of Oedogonium macroalgae for biofuel production. Biotechnol Reports 22:e00340. https://doi.org/10.1016/j.btre.2019.e00340

    Article  Google Scholar 

  • Ranganathan P, Pandey AK, Sirohi R, et al (2022) Recent advances in computational fluid dynamics (CFD) modelling of photobioreactors: Design and applications. Bioresour Technol 126920

  • Rao MS, Singh SP, Singh AK, Sodha MS (2000) Bioenergy conversion studies of the organic fraction of MSW: assessment of ultimate bioenergy production potential of municipal garbage. Appl Energy 66:75–87. https://doi.org/10.1016/S0306-2619(99)00056-2

    Article  CAS  Google Scholar 

  • Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2013) Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Appl Energy 103:444–467. https://doi.org/10.1016/j.apenergy.2012.10.004

    Article  CAS  Google Scholar 

  • Ray A, Banerjee S, Das D (2021) Microalgal bio-flocculation: present scenario and prospects for commercialization. Environ Sci Pollut Res 1–19

  • Reis A, Gouveia L (2016) Low cost microalgal production for biofuels: A review. Curr Biotechnol 5:266–276. https://doi.org/10.2174/2211550105666160712223225

    Article  CAS  Google Scholar 

  • Rempel A, de Souza SF, Margarites AC et al (2019) Bioethanol from Spirulina platensis biomass and the use of residuals to produce biomethane: an energy efficient approach. Bioresour Technol 288:121588. https://doi.org/10.1016/j.biortech.2019.121588

    Article  CAS  PubMed  Google Scholar 

  • Reno U, Regaldo L, Gagneten AM (2020) Circular Economy and Agro-Industrial Wastewater: Potential of Microalgae in Bioremediation Processes. Valoris Agro-industrial Residues–Volume I Biol Approaches 111

  • Richardson JW, Johnson MD, Outlaw JL (2012) Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Res 1:93–100. https://doi.org/10.1016/j.algal.2012.04.001

    Article  Google Scholar 

  • Rocha DN, Barbosa EG, dos Santos RN et al (2020) Improving biofuel production by thermochemical conversion of defatted Scenedesmus obliquus biomass. J Clean Prod 275:124090

    Article  CAS  Google Scholar 

  • Rodas-Zuluaga LI, Castaneda-Hernandez L, Castillo-Vacas EI, et al (2021) Bio-capture and influence of CO2 on the growth rate and biomass composition of the microalgae Botryococcus braunii and Scenedesmus sp. J CO2 Util 43:101371

  • Ryckebosch E, Bruneel C, Muylaert K, Foubert I (2012) Microalgae as an alternative source of omega-3 long chain polyunsaturated fatty acids. Lipid Technol 24:128–130. https://doi.org/10.1002/lite.201200197

    Article  CAS  Google Scholar 

  • Ryckebosch E, Bruneel C, Termote-Verhalle R et al (2014) Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem 160:393–400. https://doi.org/10.1016/j.foodchem.2014.03.087

    Article  CAS  PubMed  Google Scholar 

  • Sen TJ, Lee SY, Chew KW et al (2020) A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered 11:116–129. https://doi.org/10.1080/21655979.2020.1711626

    Article  CAS  Google Scholar 

  • Saber M, Golzary A, Hosseinpour M et al (2016) Catalytic hydrothermal liquefaction of microalgae using nanocatalyst. Appl Energy 183:566–576. https://doi.org/10.1016/j.apenergy.2016.09.017

    Article  CAS  Google Scholar 

  • Sajjadi B, Chen W-Y, Raman AAA, Ibrahim S (2018) Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renew Sustain Energy Rev 97:200–232. https://doi.org/10.1016/j.rser.2018.07.050

    Article  CAS  Google Scholar 

  • Samorì G, Samorì C, Guerrini F, Pistocchi R (2013) Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: Part I. Water Res 47:791–801. https://doi.org/10.1016/j.watres.2012.11.006

    Article  CAS  PubMed  Google Scholar 

  • Satputaley SS, Zodpe DB, Deshpande NV (2017) Performance, combustion and emission study on CI engine using microalgae oil and microalgae oil methyl esters. J Energy Inst 90:513–521. https://doi.org/10.1016/j.joei.2016.05.011

    Article  CAS  Google Scholar 

  • SB U, R S, A U, et al (2022) Sustainable microalgal biomass production in food industry wastewater for low-cost biorefinery products: A review. Photochem Rev

  • Scranton MA, Ostrand JT, Fields FJ, Mayfield SP (2015) Chlamydomonas as a model for biofuels and bio-products production. Plant J 82:523–531. https://doi.org/10.1111/tpj.12780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrà A, Artal R, García-Amorós J et al (2020) Circular zero-residue process using microalgae for efficient water decontamination, biofuel production, and carbon dioxide fixation. Chem Eng J 388:124278. https://doi.org/10.1016/j.cej.2020.124278

    Article  CAS  Google Scholar 

  • Shahi T, Beheshti B, Zenouzi A, Almasi M (2020) Bio-oil production from residual biomass of microalgae after lipid extraction: The case of Dunaliella Sp. Biocatal Agric Biotechnol 23:1094

    Article  Google Scholar 

  • Shakya R, Adhikari S, Mahadevan R et al (2017) Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties. Bioresour Technol 243:1112–1120. https://doi.org/10.1016/j.biortech.2017.07.046

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Slathia PS, Raina N, Bhagat D (2019) Microbial diversity in freshwater ecosystems and its industrial potential. In: Freshwater Microbiology. Elsevier, pp 341–392

  • Shin H-Y, Shim S-H, Ryu Y-J et al (2018a) Lipid Extraction from Tetraselmis sp. microalgae for biodiesel production using hexane-based solvent mixtures. Biotechnol Bioprocess Eng 23:16–22. https://doi.org/10.1007/s12257-017-0392-9

    Article  CAS  Google Scholar 

  • Shin YS, Il CH, Choi JW et al (2018b) Multilateral approach on enhancing economic viability of lipid production from microalgae: A review. Bioresour Technol 258:335–344. https://doi.org/10.1016/j.biortech.2018.03.002

    Article  CAS  PubMed  Google Scholar 

  • Silitonga AS, Masjuki HH, Ong HC et al (2017) Optimization of extraction of lipid from Isochrysis galbana microalgae species for biodiesel synthesis. Energy Sources Part A Recover Util Environ Eff 39:1167–1175

    Article  CAS  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011a) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102:10–16. https://doi.org/10.1016/j.biortech.2010.06.032

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011b) Mechanism and challenges in commercialisation of algal biofuels. Bioresour Technol 102:26–34. https://doi.org/10.1016/j.biortech.2010.06.057

    Article  CAS  PubMed  Google Scholar 

  • Singh HM, Kothari R, Gupta R, Tyagi VV (2019a) Bio-fixation of flue gas from thermal power plants with algal biomass: Overview and research perspectives. J Environ Manage 245:519–539

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev 14:2596–2610

    Article  CAS  Google Scholar 

  • Singh R, Bux F, Sharma YC (2020) Optimization of biodiesel synthesis from microalgal (Spirulina platensis) oil by using a novel heterogeneous catalyst, β-strontium silicate (β-Sr2SiO4). Fuel 280:118312

  • Singh R, Kumar A, Chandra Sharma Y (2019b) Biodiesel production from microalgal oil using barium–calcium–zinc mixed oxide base catalyst: optimization and kinetic studies. Energy Fuels 33:1175–1184. https://doi.org/10.1021/acs.energyfuels.8b03461

    Article  CAS  Google Scholar 

  • Singh R, Kumar A, Sharma YC (2019c) Biodiesel synthesis from microalgae (Anabaena PCC 7120) by using barium titanium oxide (Ba2TiO4) solid base catalyst. Bioresour Technol 287:121357

  • Singh SP, Singh P (2014) Effect of CO2 concentration on algal growth: a review. Renew Sustain Energy Rev 38:172–179

    Article  CAS  Google Scholar 

  • Singh UB, Ahluwalia AS (2013) Microalgae: a promising tool for carbon sequestration. Mitig Adapt Strateg Glob Chang 18:73–95. https://doi.org/10.1007/s11027-012-9393-3

    Article  Google Scholar 

  • Sirohi R, Choi H Il, Sim SJ (2022a) Microalgal fuels: Promising energy reserves for the future. Fuel 312:122841

  • Sirohi R, Lee JS, Yu BS, et al (2021) Sustainable production of polyhydroxybutyrate from autotrophs using CO2 as feedstock: challenges and opportunities. Bioresour Technol 341:125751

  • Sirohi R, Pandey AK, Ranganathan P, et al (2022b) Design and applications of photobioreactors-A review. Bioresour Technol 126858

  • Sivagurunathan P, Kumar G, Kobayashi T et al (2018) Co-digestion of untreated macro and microalgal biomass for biohydrogen production: Impact of inoculum augmentation and microbial insights. Int J Hydrogen Energy 43:11484–11492

    Article  CAS  Google Scholar 

  • Sivagurunathan P, Kumar G, Mudhoo A et al (2017) Fermentative hydrogen production using lignocellulose biomass: an overview of pre-treatment methods, inhibitor effects and detoxification experiences. Renew Sustain Energy Rev 77:28–42. https://doi.org/10.1016/j.rser.2017.03.091

    Article  CAS  Google Scholar 

  • Sivarathnakumar S, Jayamuthunagai J, Baskar G et al (2019) Bioethanol production from woody stem Prosopis juliflora using thermo tolerant yeast Kluyveromyces marxianus and its kinetics studies. Bioresour Technol 293:122060. https://doi.org/10.1016/j.biortech.2019.122060

    Article  CAS  PubMed  Google Scholar 

  • Solé-Bundó M, Passos F, Romero-Güiza MS et al (2019) Co-digestion strategies to enhance microalgae anaerobic digestion: A review. Renew Sustain Energy Rev 112:471–482

    Article  Google Scholar 

  • Song C, Hu X, Liu Z et al (2020) Combination of brewery wastewater purification and CO2 fixation with potential value-added ingredients production via different microalgae strains cultivation. J Clean Prod 268:122332

    Article  CAS  Google Scholar 

  • Sotoudehniakarani F, Alayat A, McDonald AG (2019) Characterization and comparison of pyrolysis products from fast pyrolysis of commercial Chlorella vulgaris and cultivated microalgae. J Anal Appl Pyrolysis 139:258–273. https://doi.org/10.1016/j.jaap.2019.02.014

    Article  CAS  Google Scholar 

  • Spicer A, Molnar A (2018) Gene editing of microalgae: scientific progress and regulatory challenges in Europe. Biology (basel) 7:21

    PubMed  Google Scholar 

  • Steffen B, Egli F, Pahle M, Schmidt TS (2020) Navigating the Clean Energy Transition in the COVID-19 Crisis. Joule

  • Stengel DB, Connan S (eds) (2015) Natural products from Marine Algae. Springer

    Google Scholar 

  • Stiles WAV, Styles D, Chapman SP et al (2018) Using microalgae in the circular economy to valorise anaerobic digestate: challenges and opportunities. Bioresour Technol 267:732–742

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Song K, Zhang P et al (2017) Progress of microalgae biofuel’s commercialization. Renew Sustain Energy Rev 74:402–411. https://doi.org/10.1016/j.rser.2016.12.078

    Article  Google Scholar 

  • Suali E, Sarbatly R (2012) Conversion of microalgae to biofuel. Renew Sustain Energy Rev 16:4316–4342. https://doi.org/10.1016/j.rser.2012.03.047

    Article  CAS  Google Scholar 

  • Sudhakar MP, Merlyn R, Arunkumar K, Perumal K (2016) Characterization, pretreatment and saccharification of spent seaweed biomass for bioethanol production using baker’s yeast. Biomass Bioenerg 90:148–154. https://doi.org/10.1016/j.biombioe.2016.03.031

    Article  CAS  Google Scholar 

  • Suganya T, Varman M, Masjuki HH, Renganathan S (2016) Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sustain Energy Rev 55:909–941

    Article  CAS  Google Scholar 

  • Sun J, Xiong X, Wang M et al (2019) Microalgae biodiesel production in China: a preliminary economic analysis. Renew Sustain Energy Rev 104:296–306. https://doi.org/10.1016/j.rser.2019.01.021

    Article  Google Scholar 

  • Sun K, Li Q, Zhang L et al (2020) Impacts of water-organic solvents on polymerization of the sugars and furans in bio-oil. Bioresour Technol Reports 10:100419. https://doi.org/10.1016/j.biteb.2020.100419

    Article  Google Scholar 

  • Sundar Rajan P, Gopinath KP, Arun J, Grace Pavithra K (2019) Hydrothermal liquefaction of Scenedesmus abundans biomass spent for sorption of petroleum residues from wastewater and studies on recycling of post hydrothermal liquefaction wastewater. Bioresour Technol 283:36–44. https://doi.org/10.1016/j.biortech.2019.03.077

    Article  CAS  PubMed  Google Scholar 

  • Sung YJ, Lee JS, Yoon HK et al (2021) Outdoor cultivation of microalgae in a coal-fired power plant for conversion of flue gas CO2 into microalgal direct combustion fuels. Syst Microbiol Biomanuf. 1:90–99

    Article  CAS  Google Scholar 

  • Suparmaniam U, Lam MK, Uemura Y et al (2019) Insights into the microalgae cultivation technology and harvesting process for biofuel production: a review. Renew Sustain Energy Rev 115:109361. https://doi.org/10.1016/j.rser.2019.109361

    Article  CAS  Google Scholar 

  • Sydney EB, Sydney ACN, de Carvalho JC, Soccol CR (2019) Potential carbon fixation of industrially important microalgae. In: Biofuels from Algae. Elsevier, pp 67–88

  • Tait J, Adcock M, Barker GC, et al (2011) Biofuels: ethical issues

  • Tamil Selvan S, Velramar B, Ramamurthy D et al (2020) Pilot scale wastewater treatment, CO2 sequestration and lipid production using microalga, Neochloris aquatica RDS02. Int J Phytoremediation 22:1462–1479

    Article  CAS  PubMed  Google Scholar 

  • Tan CH, Show PL, Chang J-S et al (2015) Novel approaches of producing bioenergies from microalgae: a recent review. Biotechnol Adv 33:1219–1227

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Han W, Li P et al (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol 102:3071–3076

    Article  CAS  PubMed  Google Scholar 

  • Tang DYY, Khoo KS, Chew KW, et al (2020) Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresour Technol 304:122997

  • Toro-Trochez JL, Carrillo-Pedraza ES, Bustos-Martínez D et al (2019) Thermogravimetric characterization and pyrolysis of soybean hulls. Bioresour Technol Rep 6:183–189. https://doi.org/10.1016/j.biteb.2019.02.009

    Article  Google Scholar 

  • Torres S, Acien G, García-Cuadra F, Navia R (2017) Direct transesterification of microalgae biomass and biodiesel refining with vacuum distillation. Algal Res 28:30–38. https://doi.org/10.1016/j.algal.2017.10.001

    Article  Google Scholar 

  • Trivedi J, Aila M, Bangwal DP et al (2015) Algae based biorefinery—How to make sense? Renew Sustain Energy Rev 47:295–307. https://doi.org/10.1016/j.rser.2015.03.052

    Article  CAS  Google Scholar 

  • Tsai T-Y, Lo Y-C, Dong C-D et al (2020) Biobutanol production from lignocellulosic biomass using immobilized Clostridium acetobutylicum. Appl Energy 277:115531

    Article  CAS  Google Scholar 

  • Ubando AT, Africa ADM, Maniquiz-Redillas MC et al (2021) Microalgal biosorption of heavy metals: a comprehensive bibliometric review. J Hazard Mater 402:123431

    Article  CAS  PubMed  Google Scholar 

  • Udayan A, Sirohi R, Sreekumar N et al (2022) Mass cultivation and harvesting of microalgal biomass: Current trends and future perspectives. Bioresour Technol 344:126406

    Article  CAS  PubMed  Google Scholar 

  • Umdu ES, Tuncer M, Seker E (2009) Transesterification of Nannochloropsis oculata microalga’s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts. Bioresour Technol 100:2828–2831. https://doi.org/10.1016/j.biortech.2008.12.027

    Article  CAS  PubMed  Google Scholar 

  • Ummalyma SB, Sahoo D, Pandey A (2020) Microalgal biorefineries for industrial products. In: Microalgae Cultivation for Biofuels Production. Elsevier, pp 187–195

  • Vargas-Estrada L, Longoria A, Okoye PU, Sebastian PJ (2021) Energy and nutrients recovery from wastewater cultivated microalgae: Assessment of the impact of wastewater dilution on biogas yield. Bioresour Technol 341:125755

  • Venderbosch RH (2019) Fast pyrolysis. Thermochem Process biomass Convers into fuels, Chem power 175–206

  • Verma K, Kumar PK, Krishna SV, Himabindu V (2020) Phycoremediation of sewage-contaminated lake water using microalgae-bacteria co-culture. Water Air Soil Pollut 231:1–16

    Article  Google Scholar 

  • Veza I, Roslan MF, Muhamad Said MF et al (2020) Cetane index prediction of ABE-diesel blends using empirical and artificial neural network models. Energy Sources Part A Recover Util Environ Eff 1:1–18

    Google Scholar 

  • Veza I, Said MFM, Latiff ZA (2021) Recent advances in butanol production by acetone-butanol-ethanol (ABE) fermentation. Biomass Bioenergy 144:105919

    Article  CAS  Google Scholar 

  • Veza I, Said MFM, Latiff ZA (2019) Progress of acetone-butanol-ethanol (ABE) as biofuel in gasoline and diesel engine: a review. Fuel Process Technol 196:106179

    Article  CAS  Google Scholar 

  • Vo Hoang Nhat P, Ngo HH, Guo WS et al (2018) Can algae-based technologies be an affordable green process for biofuel production and wastewater remediation? Bioresour Technol 256:491–501. https://doi.org/10.1016/j.biortech.2018.02.031

    Article  CAS  PubMed  Google Scholar 

  • Wágner DS, Radovici M, Smets BF et al (2016) Harvesting microalgae using activated sludge can decrease polymer dosing and enhance methane production via co-digestion in a bacterial-microalgal process. Algal Res 20:197–204

    Article  Google Scholar 

  • Wang C, Chen X, Li H et al (2017) Artificial miRNA inhibition of phosphoenolpyruvate carboxylase increases fatty acid production in a green microalga Chlamydomonas reinhardtii. Biotechnol Biofuels 10:1–11

    Article  Google Scholar 

  • Wang J, Peng X, Chen X, Ma X (2019) Co-liquefaction of low-lipid microalgae and starch-rich biomass waste: The interaction effect on product distribution and composition. J Anal Appl Pyrolysis 139:250–257. https://doi.org/10.1016/j.jaap.2019.02.013

    Article  CAS  Google Scholar 

  • Wang J, Yin Y (2018) Fermentative hydrogen production using pretreated microalgal biomass as feedstock. Microb Cell Fact 17:22. https://doi.org/10.1186/s12934-018-0871-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Min M, Li Y et al (2010) Cultivation of Green Algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162:1174–1186. https://doi.org/10.1007/s12010-009-8866-7

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Xu Y, Wang X et al (2018) Hydrothermal liquefaction of microalgae over transition metal supported TiO2 catalyst. Bioresour Technol 250:474–480. https://doi.org/10.1016/j.biortech.2017.11.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Guo W, Cheng C-L et al (2016) Enhancing bio-butanol production from biomass of Chlorella vulgaris JSC-6 with sequential alkali pretreatment and acid hydrolysis. Bioresour Technol 200:557–564

    Article  CAS  PubMed  Google Scholar 

  • Wieczorek N, Kucuker MA, Kuchta K (2014) Fermentative hydrogen and methane production from microalgal biomass (Chlorella vulgaris) in a two-stage combined process. Appl Energy 132:108–117. https://doi.org/10.1016/j.apenergy.2014.07.003

    Article  CAS  Google Scholar 

  • Woertz I, Feffer A, Lundquist T, Nelson Y (2009) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng 135:1115–1122. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000129

    Article  CAS  Google Scholar 

  • Wu S, Song L, Sommerfeld M et al (2017) Optimization of an effective method for the conversion of crude algal lipids into biodiesel. Fuel 197:467–473

    Article  CAS  Google Scholar 

  • Xia A, Jacob A, Tabassum MR et al (2016) Production of hydrogen, ethanol and volatile fatty acids through co-fermentation of macro-and micro-algae. Bioresour Technol 205:118–125

    Article  CAS  PubMed  Google Scholar 

  • Xia A, Sun C, Fu Q et al (2020) Biofuel production from wet microalgae biomass: comparison of physicochemical properties and extraction performance. Energy 212:118581. https://doi.org/10.1016/j.energy.2020.118581

    Article  CAS  Google Scholar 

  • Xu D, Guo S, Liu L et al (2019a) Water-soluble and -insoluble biocrude production from hydrothermal liquefaction of microalgae with catalyst. Energy Procedia 158:97–102. https://doi.org/10.1016/j.egypro.2019.01.052

    Article  CAS  Google Scholar 

  • Xu D, Savage PE (2017) Effect of temperature, water loading, and Ru/C catalyst on water-insoluble and water-soluble biocrude fractions from hydrothermal liquefaction of algae. Bioresour Technol 239:1–6. https://doi.org/10.1016/j.biortech.2017.04.127

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507. https://doi.org/10.1016/j.jbiotec.2006.05.002

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Upcraft T, Tang Q et al (2019b) Hydrogen generation performance from Taihu algae and food waste by anaerobic codigestion. Energy Fuels 33:1279–1289

    Article  CAS  Google Scholar 

  • Xu X-L, Chen HH (2020) Exploring the relationships between environmental management and financial sustainability in the energy industry: linear and nonlinear effects. Energy Environ 31:1281–1300. https://doi.org/10.1177/0958305X19882406

    Article  Google Scholar 

  • Xue Z, Li S, Yu W, et al (2021) Research advancement and commercialization of microalgae edible oil: a review. J Sci Food Agric

  • Yang C, Li R, Zhang B et al (2019) Pyrolysis of microalgae: a critical review. Fuel Process Technol 186:53–72

    Article  CAS  Google Scholar 

  • Yang J, Xu M, Zhang X et al (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102:159–165. https://doi.org/10.1016/j.biortech.2010.07.017

    Article  CAS  PubMed  Google Scholar 

  • Yin Z, Zhu L, Li S et al (2020) A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions. Bioresour Technol 301:122804

    Article  CAS  PubMed  Google Scholar 

  • Yu BS, Sung YJ, Il CH et al (2021a) Concurrent enhancement of CO2 fixation and productivities of omega-3 fatty acids and astaxanthin in Haematococcus pluvialis culture via calcium-mediated homeoviscous adaptation and biomineralization. Bioresour Technol 340:125720

    Article  CAS  PubMed  Google Scholar 

  • Yu KL, Chen W-H, Sheen H-K et al (2020) Bioethanol production from acid pretreated microalgal hydrolysate using microwave-assisted heating wet torrefaction. Fuel 279:118435

    Article  CAS  Google Scholar 

  • Yu KL, Lee XJ, Ong HC et al (2021b) Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: Equilibrium, kinetic and mechanism modeling. Environ Pollut 272:115986

    Article  CAS  PubMed  Google Scholar 

  • Yuan T, Tahmasebi A, Yu J (2015) Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor. Bioresour Technol 175:333–341

    Article  CAS  PubMed  Google Scholar 

  • Zabed HM, Akter S, Yun J et al (2020) Biogas from microalgae: Technologies, challenges and opportunities. Renew Sustain Energy Rev 117:109503

    Article  CAS  Google Scholar 

  • Zaimes GG (2016) Integrated Life Cycle Framework for Evaluating the Sustainability of Emerging Drop-In Replacement Biofuels. University of Pittsburgh

  • Zamalloa C, Vulsteke E, Albrecht J, Verstraete W (2011) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol 102:1149–1158. https://doi.org/10.1016/j.biortech.2010.09.017

    Article  CAS  PubMed  Google Scholar 

  • Zaslavskaia LA, Lippmeier JC, Shih C et al (2001) Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 292:2073–2075. https://doi.org/10.1126/science.160015

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Li L, Tong D, Hu C (2016) Microwave-enhanced pyrolysis of natural algae from water blooms. Bioresour Technol 212:311–317. https://doi.org/10.1016/j.biortech.2016.04.053

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Liu Z (2021) Advances in the biological fixation of carbon dioxide by microalgae. J Chem Technol Biotechnol 96:1475–1495

    Article  CAS  Google Scholar 

  • Zhao B, Su Y (2014) Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew Sustain Energy Rev 31:121–132

    Article  CAS  Google Scholar 

  • Zhu LD, Hiltunen E, Antila E et al (2014) Microalgal biofuels: flexible bioenergies for sustainable development. Renew Sustain Energy Rev 30:1035–1046

    Article  CAS  Google Scholar 

  • Zhu Y, Piotrowska P, van Eyk PJ et al (2016) Fluidized Bed Co-gasification of Algae and Wood Pellets: Gas Yields and Bed Agglomeration Analysis. Energy Fuels 30:1800–1809. https://doi.org/10.1021/acs.energyfuels.5b02291

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anh Tuan Hoang, Ashok Pandey, Wei-Hsin Chen or Van Viet Pham.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, A.T., Sirohi, R., Pandey, A. et al. Biofuel production from microalgae: challenges and chances. Phytochem Rev 22, 1089–1126 (2023). https://doi.org/10.1007/s11101-022-09819-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-022-09819-y

Keywords

Navigation