Skip to main content

Advertisement

Log in

Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1–2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bahari L, Gilad Y, Borovok I, Kahel-Raifer H, Dassa B, Nataf Y, Shoham Y, Lamed R, Bayer EA (2011) Glycoside hydrolases as components of putative carbohydrate biosensor proteins in Clostridium thermocellum. J Ind Microbiol Biotechnol 38:825–832. doi:10.1007/s10295-010-0848-9

    Article  CAS  Google Scholar 

  • Brown SD, Yang SY, Guss A, Yang Z, Karpinets T, Klingeman DM, Tschaplinski TJ, Giannone RJ, Hettich RL, Engle NL, Dice L, Rodriguez Jr M, Mielenz J, Cottingham R, Hauser L, Gorin A, Davison BH, Palumbo AV, Lynd L, Keller M (2010) Analysis of the ethanol stress and tolerance mechanisms for Clostridium thermocellum through the integration of genome resequencing and systems biology studies. In: 110th ASM General Meeting, San Diego, CA, USA, May 2010

  • Burdette DS, Jung S-H, Shen G-J, Hollingsworth RI, Zeikus JG (2002) Physiological function of alcohol dehydrogenases and long-chain (C30) fatty acids in alcohol tolerance of Thermoanaerobacter ethanolicus. Appl Environ Microbiol 68(4):1914–1918

    Article  CAS  Google Scholar 

  • Ding J, Huang X, Zhang L, Zhao N, Yang D, Zhang K (2009) Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 85(2):253–263

    Article  CAS  Google Scholar 

  • Giovanni-Donnelly RD, Kolbye SM, Dipaolo JA (1967) The effect of carbamates on Bacillus subtilis. Mutat Res-Fund Mol M 4(5):543–551

    Article  Google Scholar 

  • Gowen CM, Fong SS (2010) Genome-scale metabolic model integrated with RNAseq data to identify metabolic states of Clostridium thermocellum. Biotechnol J 5(7):759–767

    Article  CAS  Google Scholar 

  • Herrero AA, Gomez RF (1980) Development of ethanol tolerance in Clostridium thermocellum: effect of growth temperature. Appl Environ Microbiol 40(3):571–577

    CAS  Google Scholar 

  • Herrero AA, Gomez RF, Roberts MF (1982) Ethanol-induced changes in the membrane lipid composition of Clostridium thermocellum. Biochim Biophys Acta 693(1):195–204

    Article  CAS  Google Scholar 

  • Ingram LO (1990) Ethanol tolerance in bacteria. Crit Rev Biotechnol 9(4):305–319

    Article  CAS  Google Scholar 

  • Isenberg HD, Schatz A, Angrist AA, Schatz V, Trelawny GS (1954) Microbial metabolism of carbamates II. Nitrification of urethan by Streptomyces nitrificans. J Bacteriol 68(1):5–9

    CAS  Google Scholar 

  • Jeffries TW, Jin Y-S (2000) Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Adv Appl Microbiol 47:221–268

    Article  CAS  Google Scholar 

  • Kahel-Raifer H, Jindou S, Bahari L, Nataf Y, Shoham Y, Bayer EA, Borovok I, Lamed R (2010) The unique set of putative membrane-associated anti-σ factors in Clostridium thermocellum suggests a novel extracellular carbohydrate-sensing mechanism involved in gene regulation. FEMS Microbiol Lett 308(1):84–93

    Article  CAS  Google Scholar 

  • Ladisch M, Flatt J, Lynd L, Rajgarhia V, Wenger K, Hogsett DA, Wyman CE, Belcher A, van Rooyen J, Sivasubramanian MS, DiMasi D, Shao X, Draeger J, Kim Y, Ximenes E, Mosier N (2009) Development and deployment of consolidated bioprocessing for production of ethanol. In: 31st symposium on biotechnology for fuels and chemicals, “”San Francisco, CA, USA, 3–6 May 2009

  • Lamed R, Zeikus JG (1980) Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J Bacteriol 144(2):569–578

    CAS  Google Scholar 

  • Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18(11):1851–1858

    Article  CAS  Google Scholar 

  • Lovitt RW, Shen GJ, Zeikus JG (1988) Ethanol-production by thermophilic bacteria—biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J Bacteriol 170(6):2809–2815

    CAS  Google Scholar 

  • Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Progr 15(5):777–793

    Article  CAS  Google Scholar 

  • Lynd LR, Baskaran S, Casten S (2001) Salt accumulation resulting from base added for pH control, and not ethanol, limits growth of Thermoanaerobacterium thermosaccharolyticum HG-8 at elevated feed xylose concentrations in continuous culture. Biotechnol Progr 17(1):118–125

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology (vol 66, pg 506, 2002). Microbiol Mol Biol R 66(4):739–739

    Article  Google Scholar 

  • Lynd LR, Jin H, Michaels JD, Wyman CE, Dale B (2003) Bioenergy: background, potential, and policy. Center for Strategic and International Studies, Washington

    Google Scholar 

  • Nataf Y, Bahari L, Kahel-Raifer H, Borovok I, Lamed R, Bayer EA, Sonenshein AL, Shoham Y (2010) Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors. PNAS 107:8646–18651. doi:10.1073/pnas.1012175107

    Article  Google Scholar 

  • Pei J, Zhou Q, Jiang Y, Le Y, Li H, Shao W (2010) Thermoanaerobacter spp. control ethanol pathway via transcriptional regulation and versatility of key enzymes. Metab Eng 12(5):420–428

    Article  CAS  Google Scholar 

  • Pei J, Zhou Q, Jing Q, Li L, Dai C, Li H, Wiegel J, Shao W (2011) The mechanism for regulating ethanol fermentation by redox levels in Thermoanaerobacter ethanolicus. Metab Eng 13(2):186–193

    Article  CAS  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  CAS  Google Scholar 

  • Rydzak T, Levin DB, Cicek N, Sparling R (2009) Growth phase-dependant enzyme profile of pyruvate catabolism and end-product formation in Clostridium thermocellum ATCC 27405. J Biotechnol 140(3–4):169–175

    Article  CAS  Google Scholar 

  • Sudha Rani K, Seenayya G (1999) High ethanol tolerance of new isolates of Clostridium thermocellum strains SS21 and SS22. World J Microbiol Biotechnol 15:173–178

    Article  Google Scholar 

  • Tailliez P, Girard H, Longin R, Beguin P, Millet J (1989) Cellulose fermentation by an asporogenous mutant and an ethanol-tolerant mutant of Clostridium thermocellum. Appl Environ Microbiol 55(1):203–206

    CAS  Google Scholar 

  • Timmons MD, Knutson BL, Nokes SE, Strobel HJ, Lynn BC (2009) Analysis of composition and structure of Clostridium thermocellum membranes from wild-type and ethanol-adapted strains. Appl Microbiol Biotechnol 82:929–939

    Article  CAS  Google Scholar 

  • Tripathi SA, Olson DG, Argyros DA, Miller BB, Barrett TF, Murphy DM, McCool JD, Warner AK, Rajgarhia VB, Lynd LR, Hogsett DA, Caiazza NC (2010) Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol 76:6591–6599. doi:10.1128/AEM.01484-10

    Article  CAS  Google Scholar 

  • Wang DIC, Avgerinos GC, Biocic I, Wang S-D, Fang H-Y, Young FE (1983) Ethanol from cellulosic biomass. Philos Trans R Soc London Ser B 300:323–333

    Article  CAS  Google Scholar 

  • Williams TI, Combs JC, Lynn BC, Strobel HJ (2007) Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum. Appl Microbiol Biotechnol 74(2):422–432

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support provided by funding grants from the BioEnergy Science Center (BESC), a US Department of Energy (DOE) Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science and Mascoma Corporation. The authors are also grateful for the genome sequencing support provided by the DOE Joint Genome Institute (JGI). Oak Ridge National Laboratory is managed by University of Tennessee UT-Battelle LLC for the Department of Energy under contract no. DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee R. Lynd.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 175 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, X., Raman, B., Zhu, M. et al. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum . Appl Microbiol Biotechnol 92, 641–652 (2011). https://doi.org/10.1007/s00253-011-3492-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3492-z

Keywords

Navigation