Skip to main content

Advertisement

Log in

Using microorganisms to brew biofuels

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Interest in alternative fuel sources has grown in recent years in response to a confluence of factors, including concerns over our reliance on and increasing demand for fossil fuels as well as the deleterious environmental effects of fossil fuel extraction and utilization. The use of microbe-derived fuel alcohols is a viable alternative, as they are renewable, emit fewer greenhouse gasses, and require little augmentation of current energy infrastructure as compared to other sustainable transportation options such as electric vehicles and fuel cells. Here, we present a brief overview of candidate substrates for alcohol production with a focus on lignocellulosic sources, relevant microorganisms under research for industrialization and the biotechnological techniques used to improve alcohol production phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Aaron E. W.; Hopkins wj; Porges N. Whey utilization: growth conditions for Saccharomyces fragilis. Sewage and Industrial Wastes 30: 913–920; 1958.

    Google Scholar 

  • Abouzied M. M.; Reddy C. A. Direct fermentation of potato starch to ethanol by cocultures of Aspergillus niger and Saccharomyces cerevisiae. Appl Environ Microbiol 52: 1055–1059; 1986.

    PubMed  CAS  Google Scholar 

  • Alfenore S.; Molina-Jouve C.; Guillouet S.; Uribelarrea S. J.; Goma G. Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Applied Microbiology and Biotechnology 60: 67–72; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Alper H.; Moxley J.; Nevoigt E.; Fink G.; Stephanopoulos G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314: 1565–1568; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Alper H.; Stephanopoulos G. Global transcription machinery engineering: a new approach for improving cellular phenotype. Metabolic Engineering 9: 258–267; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Alterthum F.; Ingram L. Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherchia coli. Applied and Environmental Microbiology 55: 1943–1948; 1989.

    PubMed  CAS  Google Scholar 

  • Bailey J. Toward a science of metabolic engineering. Science 252: 1668–1675; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Bailey J.; Birnbaum S.; Galazzo J.; Khosla C.; Shanks J. Strategies and challenges in metabolic engineering. Annals of the New York Academy of Sciences 589: 1–15; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Bailey J.; Sburlati A.; Hatzimanikatis V.; Lee K.; Renner W. et al. Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnology and Bioengineering 52: 109–21; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Ballesteros I.; Oliva J.; Negro M. J.; Manzanares P.; Ballesteros M. Ethanol production from olive oil extraction residue pretreated with hot water. Appl Biochem Biotechnol 98–100: 717–732; 2002.

    Article  PubMed  Google Scholar 

  • Becker J.; Boles E. A modified Saccharomyces cerevisiae strain that consumes l-arabinose and produces ethanol. Appl Environ Microbiol 69: 4144–4150; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Bonchev D.; Rouvray D. Complexity in chemistry, biology, and ecology. Springer, New York, New York; 2005.

    Book  Google Scholar 

  • Brat D.; Boles E.; Wiedemann B. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 75: 2304–2311; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Cameron D.; Chaplen F. Developments in metabolic engineering. Current Opinion in Biotechnology 8: 175–180; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Cardona C. A.; Sanchez O. J. Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98: 2415–2457; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Chandel A. K.; Kapoor R. K.; Singh A.; Kuhad R. C. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98: 1947–1950; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Cherry J.; Fidantsef A. Directed evolution of industrial enzymes: an update. Current Oopinion in Biotechnology 14: 438–443; 2003.

    Article  CAS  Google Scholar 

  • Chu B. C. H.; Lee H. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnology advances 25: 425–441; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Cruz Ramos H.; Hoffmann T.; Marino M.; Nedjari H.; Presecan-Siedel E. et al. Fermentative metabolism of Bacillus subtilis: physiology and regulation of gene expression. Journal of Bacteriology 182: 3072–3080; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Dashtban M.; Schraft H.; Qin W. Fungal bioconversion of lignocellulosic residues; opportunities and perspectives. Int J Biol Sci 5: 578–595; 2009.

    PubMed  CAS  Google Scholar 

  • Deanda K.; Zhang M.; Eddy C.; Picataggio S. Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Applied and Environmental Microbiology 62: 4465; 1996.

    PubMed  CAS  Google Scholar 

  • Demain A. L.; Newcomb M.; Wu J. H. Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69: 124–154; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Dien B.; Cotta M.; Jeffries T. Bacteria engineered for fuel ethanol production: current status. Applied Microbiology and Biotechnology 63: 258–266; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Dworkin M. The prokaryotes: volume 1: symbiotic associations, biotechnology, applied microbiology. Springer, New York, New York; 2006.

    Google Scholar 

  • Fonseca G. G.; Heinzle E.; Wittmann C.; Gombert A. K. The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79: 339–354; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Fromanger R.; Guillouet S. E.; Uribelarrea J. L.; Molina-Jouve C.; Cameleyre X. Effect of controlled oxygen limitation on Candida shehatae physiology for ethanol production from xylose and glucose. J Ind Microbiol Biotechnol 37: 437–445; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Giampietro M.; Ulgiati S.; Pimentel D. Feasibility of large-scale biofuel production. BioScience 47: 587–600; 1997.

    Article  Google Scholar 

  • Golias H.; Dumsday G. J.; Stanley G. A.; Pamment N. B. Evaluation of a recombinant Klebsiella oxytoca strain for ethanol production from cellulose by simultaneous saccharification and fermentation: comparison with native cellobiose-utilising yeast strains and performance in co-culture with thermotolerant yeast and Zymomonas mobilis. J Biotechnol 96: 155–168; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Correa M.; Portal L.; Moreno P.; Tengerdy R. P. Mixed culture solid substrate fermentation of Trichoderma reesei with Aspergillus niger on sugar cane bagasse. Bioresource Technology 68: 173–178; 1999.

    Article  CAS  Google Scholar 

  • Hacking A. J.; Taylor I. W. F.; Hanas C. M. Selection of yeast able to produce ethanol from glucose at 40°C. Applied Microbiology and Biotechnology 19: 361–363; 1984.

    Article  CAS  Google Scholar 

  • Hahn-Hagerdal B. Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Advancers in Biochemical Engineering/Biotechnology 71: 53–8; 2001.

    Article  Google Scholar 

  • Harwood C. R. Bacillus. Plenum Press, New York New York; 1989.

    Google Scholar 

  • Hayashida S.; Ohta K. Formation of high concentrations of alcohol by various yeasts [Japan: including Saccharomyces sake]. Journal of the Institute of Brewing 87: 42–44; 1981.

    CAS  Google Scholar 

  • Heinen U. J.; Heinen W. Characteristics and properties of a caldo-active bacterium producing extracellular enzymes and two related strains. Arch Mikrobiol 82: 1–23; 1972.

    Article  PubMed  CAS  Google Scholar 

  • Hendriks A. T.; Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100: 10–18; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Himmel M. E.; Ding S. Y.; Johnson D. K.; Adney W. S.; Nimlos M. R. et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315: 804–807; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Hinman N. D. et al. Xylose fermentation—an economic analysis. Applied Biochemistry and Biotechnology 20–21: 391–402; 1989.

    Article  Google Scholar 

  • Hyun H.; Zeikus J. General biochemical characterization of thermostable pullulanase and glucoamylase from Clostridium thermohydrosulfuricum. Applied and Environmental Microbiology 49: 1168–1173; 1985a.

    PubMed  CAS  Google Scholar 

  • Hyun H.; Zeikus J. Simultaneous and enhanced production of thermostable amylases and ethanol from starch by cocultures of Clostridium thermosulfurogenes and Clostridium thermohydrosulfuricum. Applied and Environmental Microbiology 49: 1174–1181; 1985b.

    PubMed  CAS  Google Scholar 

  • Jeffries T.; Shi N. Genetic engineering for improved xylose fermentation by yeasts. Adv Biochem Eng Biotechnol 65: 117–161; 1999.

    PubMed  CAS  Google Scholar 

  • Jeffries T. W. Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17: 320–326; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Kang S. W.; Ko E. H.; Lee J. S.; Kim S. W. Over-production of β-glucosidase by Aspergillus niger mutant from lignocellulosic biomass. Biotechnology Letters 21: 647–650; 1999.

    Article  CAS  Google Scholar 

  • Kang S. W.; Park Y. S.; Lee J. S.; Hong S. I.; K S. W. Jan Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour Technol 19: 153–156; 2004.

    Article  CAS  Google Scholar 

  • Karczewska H. Some observations on pentose utilization by Candida tropicalis. Comptes rendus des travaux du laboratoire Carlsberg 31: 251–258; 1959.

    PubMed  CAS  Google Scholar 

  • Karhumaa K. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22: 359–368; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Karsch T.; Stahl U.; Esser K. Ethanol production by Zymomonas and Saccharomyces, advantages and disadvantages. Applied Microbiology and Biotechnology 18: 387–391; 1983.

    Article  CAS  Google Scholar 

  • Kellogg E.; Shaffer H. Model organisms in evolutionary studies. Systematic Biology 42: 409; 1993.

    Article  Google Scholar 

  • Kelly J. M.; Hynes M. J. Transformation of Aspergillus niger by the amdS gene of Aspergillus nidulans. Embo J 4: 475–479; 1985.

    PubMed  CAS  Google Scholar 

  • Klamt S.; Stelling J. Combinatorial complexity of pathway analysis in metabolic networks. Molecular Biology Reports 29: 233–236; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Kodama K. Sake-brewing yeast. In: Rose A. H.; Harrison J. S. (eds) The yeasts, Yeast technology, vol. 5. Academic, New York New York, pp 129–168; 1993.

    Google Scholar 

  • Kohalmi S.; Kunz B. Role of neighbouring bases and assessment of strand specificity in ethylmethanesulphonate and N-methyl-N′-nitro-N-nitrosoguanidine mutagenesis in the SUP4-o gene of Saccharomyces cerevisiae. Journal of Molecular Biology 204: 561; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Koskinen P. E.; Beck S. R.; Orlygsson J.; Puhakka J. A. Ethanol and hydrogen production by two thermophilic, anaerobic bacteria isolated from Icelandic geothermal areas. Biotechnol Bioeng 101: 679–69; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Kostova D.; Petrova V.; Kujumdzieva A. Over-expression of DAAO and catalase in Kluyveromyces marxianus through media optimization, permeabilization and GA stabilization techniques. Enzyme and Microbial Technology 42: 113–120; 2008.

    Article  CAS  Google Scholar 

  • Kotter P.; Ciriacy M. Xylose fermentation by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 38: 776–783; 1992.

    Article  Google Scholar 

  • Kurtzman C. P.; Suzuki M. Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience 51: 2–14; 2010.

    Article  CAS  Google Scholar 

  • Kuyper M.; Hartog M. M.; Toirkens M. J.; Almering M. J.; Winkler A. A. et al. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5: 399–409; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Lau M. W.; Gunawan C.; Balan V.; Dale B. E. Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production. Biotechnol Biofuels 3: 11; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Lin Y.; Tanaka S. Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69: 627–642; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Liu H.; Xu L.; Yan M.; Lai C.; Ouyang P. gTME for construction of recombinant yeast co-fermenting xylose and glucose. Chinese Journal of Biotechnology 24: 1010–1015; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Lodder J. The yeasts; a taxonomic study. North-Holland Pub. Co., Amsterdam, Netherlands; 1970.

    Google Scholar 

  • Luo L. H.; Seo P.; Seo J.; Heo S.; Kim D. et al. Improved ethanol tolerance in Escherichia coli by changing the cellular fatty acids composition through genetic manipulation. Biotechnology Letters 31: 1867–1871; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Lynd L.; Zyl W.; McBride J.; Laser M. Consolidated bioprocessing of cellulosic biomass: an update. Current Opinion in Biotechnology 16: 577–583; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Maddox I. The acetone–butanol–ethanol fermentation: recent progress in technology. Biotechnology & Genetic Engineering Reviews 7: 189–220; 1989.

    CAS  Google Scholar 

  • Maksoud S. A.; El Hadidi M. N.; Amer W. M. Beer from the early dynasties (3500–3400 cal B.C.) of Upper Egypt, detected by archaeochemical methods. Vegetation History and Archaeobotany 3: 219–224; 1994.

    Article  Google Scholar 

  • Margaritis A.; Bajpai P. Direct fermentation of d-xylose to ethanol by Kluyveromyces marxianus strains. Applied and Environmental Microbiology 44: 1039–1041; 1982.

    PubMed  CAS  Google Scholar 

  • Martinez D.; Berka R.; Henrissat B.; Saloheimo M.; Arvas M. et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology 26: 553–560; 2008.

    Article  PubMed  CAS  Google Scholar 

  • McGovern P.; Zhang J.; Tang J.; Zhang Z.; Hall G. et al. Fermented beverages of pre-and proto-historic China. Proceedings of the National Academy of Sciences 101: 17593–17598; 2004.

    Article  CAS  Google Scholar 

  • Menon V.; Prakash G.; Prabhune A.; Rao M. Biocatalytic approach for the utilization of hemicellulose for ethanol production from agricultural residue using thermostable xylanase and thermotolerant yeast. Bioresour Technol 101: 5366–5373; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Minton N.; Clarke D. Clostridia. Plenum Pub Corp, New York; 1989.

    Google Scholar 

  • Mishra P.; Singh A. Microbial pentose utilization. Advances in Applied Microbiology 39: 91–91; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell W. Physiology of carbohydrate to solvent conversion by clostridia. Advances in Microbial Physiology 39: 31; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Moat A.; Foster J.; Spector M. Microbial Physiology. Wiley Inc., New York, New York; 2002.

    Book  Google Scholar 

  • Mohagheghi A.; Evans K.; Chou Y.; Zhang M. Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Applied Biochemistry and Biotechnology 98: 885–898; 2002.

    Article  PubMed  Google Scholar 

  • Morais P.; Rosa C.; Linardi V.; Carazza F.; Nonato E. Production of fuel alcohol by Saccharomyces strains from tropical habitats. Biotechnology Letters 18: 1351–1356; 1996.

    Article  CAS  Google Scholar 

  • Mousedale D. Biofuels: biotechnology, chemistry, and sustainable development. CRC Press, Boca Raton Florida; 2008.

    Book  Google Scholar 

  • Mushegian A.; Koonin E. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci USA 93: 10268–10273; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Nakano M.; Dailly Y.; Zuber P.; Clark D. Characterization of anaerobic fermentative growth of Bacillus subtilis: identification of fermentation end products and genes required for growth. Journal of Bacteriology 179: 6749–6755; 1997.

    PubMed  CAS  Google Scholar 

  • Nanmori T.; Watanabe T.; Shinke R.; Kohno A.; Kawamura Y. Purification and properties of thermostable xylanase and beta-xylosidase produced by a newly isolated Bacillus stearothermophilus strain. Journal of Bacteriology 172: 6669–6672; 1990.

    PubMed  CAS  Google Scholar 

  • Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews 72: 379; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Nigam J. Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. Journal of Biotechnology 87: 17–27; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Odds F. C. Candida and candidiasis: a review and bibliography. Bailliere Tindall, London UK; 1988.

    Google Scholar 

  • Ohta K.; Beall D.; Mejia J.; Shanmugam K.; Ingram L. Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Applied and Environmental Microbiology 57: 893–900; 1991.

    PubMed  CAS  Google Scholar 

  • Parekh S (2004) Strain improvement. The Desk Encyclopedia of Microbiology: 960

  • Parekh S.; Wayman M. Fermentation of cellobiose and wood sugars to ethanol by Candida shehatae and Pichia stipitis. Biotechnology Letters 8: 597–600; 1986.

    Article  CAS  Google Scholar 

  • Patle S.; Lal B. Investigation of the potential of agro-industrial material as low cost substrate for ethanol production by using candida tropicalis and zymomonas mobilis. Biomass and Bioenergy 32: 596–602; 2008.

  • Payton M. Production of ethanol by thermophilic bacteria. Trends in Biotechnology 2: 153–158; 1984.

    Article  CAS  Google Scholar 

  • Pel H. J.; de Winde J. H.; Archer D. B.; Dyer P. S.; Hofmann G. et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25: 221–231; 2007.

    Article  PubMed  Google Scholar 

  • Pennock J.; Tempest D. Metabolic and energetic aspects of the growth of Bacillus stearothermophilus in glucose-limited and glucose-sufficient chemostat culture. Archives of Microbiology 150: 452–459; 1988.

    Article  CAS  Google Scholar 

  • Peters D. Carbohydrates for fermentation. Biotechnology Journal 1: 806–814; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Qureshi N.; Blaschek H. Production of acetone butanol ethanol (ABE) by a hyper-producing mutant strain of Clostridium beijerinckii BA101 and recovery by pervaporation. Biotechnology Progress 15: 594–602; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Ragauskas A. J.; Williams C. K.; Davison B. H.; Britovsek G.; Cairney J. et al. The path forward for biofuels and biomaterials. Science 311: 484–489; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Rahman Z.; Shida Y.; Furukawa T.; Suzuki Y.; Okada H. et al. Application of Trichoderma reesei cellulase and xylanase promoters through homologous recombination for enhanced production of extracellular beta-glucosidase I. Biosci Biotechnol Biochem 73: 1083–1089; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Rao R. S.; Bhadra B.; Shivaji S. Isolation and characterization of ethanol-producing yeasts from fruits and tree barks. Lett Appl Microbiol 47: 19–24; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Rattanachomsri U.; Tanapongpipat S.; Eurwilaichitr L.; Champreda V. Simultaneous non-thermal saccharification of cassava pulp by multi-enzyme activity and ethanol fermentation by Candida tropicalis. J Biosci Bioeng 107: 488–493; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Ren C.; Chen T.; Zhang J.; Liang L.; Lin Z. An evolved xylose transporter from Zymomonas mobilis enhances sugar transport in Escherichia coli. Microb Cell Fact 8: 66; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Roberts S. B.; Gowen C. M.; Brooks J. P.; Fong S. S. Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol produciton. BMC Systems Biology 4: 31; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Rogers P. L.; Jeon Y. J.; Lee K. J.; Lawford H. G. Zymomonas mobilis for fuel ethanol and higher value products. Adv Biochem Eng Biotechnol 108: 263–288; 2007.

    PubMed  CAS  Google Scholar 

  • Rose A. H.; Harrison J. S. The yeasts. Academic P, London, UK; 1969.

    Google Scholar 

  • Rowlands R. Industrial strain improvement: mutagenesis and random screening procedures. Enzyme and Microbial Technology 6: 3–11; 1984.

    Article  CAS  Google Scholar 

  • Schneider H.; Wang P.; Chan Y.; Maleszka R. Conversion of d-xylose into ethanol by the yeast Pachysolen tannophilus. Biotechnology Letters 3: 89–92; 1981.

    Article  CAS  Google Scholar 

  • Schuster E.; Dunn-Coleman N.; Frisvad J. C.; Van Dijck P. W. On the safety of Aspergillus niger—a review. Appl Microbiol Biotechnol 59: 426–435; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Sedlak M.; Ho N. Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose. Applied Biochemistry and Biotechnology 114: 403–416; 2004.

    Article  Google Scholar 

  • Sharp R.; Bown K.; Atkinson A. Phenotypic and genotypic characterization of some thermophilic species of Bacillus. Microbiology 117: 201; 1980.

    Article  CAS  Google Scholar 

  • Shaw A. J.; Podkaminer K. K.; Desai S. G.; Bardsley J. S.; Rogers S. R. et al. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci U S A 105: 13769–13774; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Shetty K, Paliyath G, Pometto A Levin R (1999) Food Biotechnology. CRC.

  • Shi N. Q.; Davis B.; Sherman F.; Cruz J.; Jeffries T. W. Disruption of the cytochrome C gene in xylose-utilizing yeast Pichia stipitis leads to higher ethanol production. Yeast 15: 1021–1030; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Skoog K.; Hahn-Hagerdal B. Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl. Environ. Microbiol. 56: 3389–3394; 1990.

    PubMed  CAS  Google Scholar 

  • Skotnicki M.; Lee K.; Tribe D.; Rogers P. Comparison of ethanol production by different Zymomonas strains. Applied and Environmental Microbiology 41: 889–893; 1981.

    PubMed  CAS  Google Scholar 

  • Slapack G. E.; Russell I.; Stewart G. G. Thermophilic microbes in ethanol production. CRC Press, Boca Raton, FL USA; 1987.

    Google Scholar 

  • Sonderegger M. et al. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Biotechnology and Bioengineering 87: 90–98; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Sonderegger M.; Sauer U. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Applied and Environmental Microbiology 69: 1990; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Stephanopoulos G. Metabolic engineering: principles and methodologies. Elsevier Science, San Diego, California; 1998. 58.

    Google Scholar 

  • Stephanopoulos G.; Alper H.; Moxley J. Exploiting biological complexity for strain improvement through systems biology. Nature Biotechnology 22: 1261–1267; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Sun Y.; Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83: 1–11; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Swings J.; De Ley J. The biology of Zymomonas. Microbiology and Molecular Biology Reviews 41: 1–46; 1977.

    CAS  Google Scholar 

  • Tailliez P.; Girard H.; Longin R.; Beguin P.; Millet J. Cellulose fermentation by an asporogenous mutant and an ethanol-tolerant mutant of Clostridium thermocellum. Appl Environ Microbiol 55: 203–206; 1989a.

    PubMed  CAS  Google Scholar 

  • Tailliez P.; Girard H.; Millet J.; Beguin P. Enhanced cellulose fermentation by an asporogenous and ethanol-tolerant mutant of Clostridium thermocellum. Appl Environ Microbiol 55: 207–211; 1989b.

    PubMed  CAS  Google Scholar 

  • Taylor M. P.; Eley K. L.; Martin S.; Tuffin M. I.; Burton S. G. et al. Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol 27: 398–405; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Tian S.; Zang J.; Pan Y.; Liu J.; Yuan Z. et al. Construction of a recombinant yeast strain converting xylose and glucose to ethanol. Frontiers of Biology in China 3: 165–169; 2008.

    Article  Google Scholar 

  • Toivola A.; Yarrow D.; Van Den Bosch E.; Van Dijken J.; Scheffers W. Alcoholic fermentation of D-xylose by yeasts. Applied and Environmental Microbiology 47: 1221–1223; 1984a.

    PubMed  CAS  Google Scholar 

  • Toivola A.; Yarrow D.; van den Bosch E.; van Dijken J. P.; Scheffers W. A. Alcoholic fermentation of d-xylose by yeasts. Appl Environ Microbiol 47: 1221–1223; 1984b.

    PubMed  CAS  Google Scholar 

  • Van Der Walt J. Kluyveromyces—a new yeast genus of the Endomycetales. Antonie Van Leeuwenhoek 22: 265–272; 1956.

    Article  Google Scholar 

  • Wang H.; Isaacs F.; Carr P.; Sun Z.; Xu G. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460: 894–898; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Wang P.; Shopsis C.; Schneider H. Fermentation of a pentose by yeasts. Biochemical and Biophysical Research Communications 94: 248; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Weber C.; Farwick A.; Benisch F.; Brat D.; Dietz H. et al. Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 87: 1303–1315; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Wickerham L. Taxonomy of yeasts. Technical Bulletin 1029: 1–5; 1951.

    Google Scholar 

  • Wiegel J.; Ljungdahl L. Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium. Archives of Microbiology 128: 343–348; 1981.

    Article  CAS  Google Scholar 

  • Wiegel J.; Ljungdahl L.; Rawson J. Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum. Journal of Bacteriology 139: 800–810; 1979.

    PubMed  CAS  Google Scholar 

  • Wisselink H. W.; Toirkens M. J.; del Rosario Franco Berriel M.; Winkler A. A.; van Dijken J. P. et al. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of l-arabinose. Appl Environ Microbiol 73: 4881–4891; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Wood B.; Ingram L. Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum. Applied and Environmental Microbiology 58: 2103–2110; 1992.

    PubMed  CAS  Google Scholar 

  • Yomano L.; York S.; Ingram L. Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. Journal of Industrial Microbiology and Biotechnology 20: 132–138; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Yomano L. P.; York S. W.; Shanmugam K. T.; aIngram L. O. Deletion of methylglyoxal synthase gene (mgsA) increased sugar co-metabolism in ethanol-producing Escherichia coli. Biotechnol Lett 31: 1389–1398; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Zeikus J. Chemical and fuel production by anaerobic bacteria. Annual Reviews in Microbiology 34: 423–464; 1980.

    Article  CAS  Google Scholar 

  • Zhang M.; Eddy C.; Deanda K.; Finkelstein M.; Picataggio S. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267: 240; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Zhou B.; Martin G.; Pamment N. Increased phenotypic stability and ethanol tolerance of recombinant Escherichia coli KO11 when immobilized in continuous fluidized bed culture. Biotechnology and Bioengineering 100(4): 627–633; 2008.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reeta Prusty Rao.

Additional information

Editor: P. Lakshmanan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, R.P., Dufour, N. & Swana, J. Using microorganisms to brew biofuels. In Vitro Cell.Dev.Biol.-Plant 47, 637–649 (2011). https://doi.org/10.1007/s11627-011-9374-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-011-9374-3

Keywords

Navigation