Skip to main content
Log in

Proline: a key player in plant abiotic stress tolerance

  • Reviews
  • Published:
Biologia Plantarum

Abstract

Dramatic accumulation of proline is a common physiological response in plants exposed to various abiotic stresses. Accumulation of proline could be due to de novo synthesis, decreased degradation, lower utilization, or hydrolysis of proteins. Extensive intercellular proline transport occurs between the cytosol, chloroplasts, and mitochondria due to its compartmentalized metabolism. Although all functions of proline in stress tolerance are still a matter of debate, it is suggested that proline contributes to stabilization of sub-cellular structures, scavenging free radicals, and buffering cellular redox potential. It also chelates heavy metals, modulates cellular functions, and even triggers gene expression. Apparently, proline acts as stress-related signal exhibiting cross tolerance to a range of different stresses. Besides these significant roles, its metabolism is found to be coupled to several key pathways such as pentose phosphate, tricarboxylic acid, or urea cycles and contributes to, i.e., purine synthesis and the phenylpropanoid pathway. Although the molecular basis of regulation of proline metabolism is still largely obscure, the genetic engineering of proline content could lead to new opportunities to achieve plant stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

APX:

ascorbate peroxidase

CAT:

catalase

GR:

glutathione reductase

GSA:

glutamate semialdehyde

H2O2 :

hydrogen peroxide

O2 :

superoxide

OH· :

hydroxyl radical

OAT:

ornithine aminotransferase

PPP:

pentose phosphate pathway

P5C:

pyrroline-5-carboxylate

P5CDH:

P5C dehydrogenase

P5CS:

pyrroline-5-carboxylate synthetase

P5CR:

P5C reductase

PDH:

proline dehydrogenase

POX:

proline oxidase

PP:

pentose pathway

ROS:

reactive oxygen species

SA:

salicylic acid

SOD:

superoxide dismutase

TCA:

tricarboxylic acid

References

  • Aggarwal, M., Sharma, S., Kaur, N., Pathania, D., Bhandhari, K., Kaushal, Kaur, N., Singh, R.K., Srivastava, A., Nayyar, H.: Exogenous proline application reduces phytotoxic effects of selenium by minimising oxidative stress and improves growth in bean (Phaseolus vulgaris L.) seedlings. — Biol. Trace Element Res. 140: 354–367, 2011.

    Article  CAS  Google Scholar 

  • Ahmed, C.B., Rouina, B.B., Sensoy, S., Boukhriss, M., Abdullah, F.B.: Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. — J. Agr. Food Chem. 58: 4216–4222, 2010.

    Article  CAS  Google Scholar 

  • Alcazar, R., Altabella, T., Marco, F., Bortolotti, C., Reymond, M., Koncz, C., Carrasco, P., Tiburcio, A.F.: Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. — Planta 231: 1237–1249, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Alia, Mohanty, P., Matysik, J.: Effect of proline on the production of singlet oxygen. — Amino Acids 21: 195–200, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Araújo, W.L., Trofimova, L., Mkrtchyan, G., Steinhauser, D., Krall, L., Graf, A.: On the role of the mitochondrial 2-oxoglutarate dehydrogenase complex in amino acid metabolism. — Amino Acids 44: 683–700, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Arora, S., Saradhi, P.P.: Light induced enhancement in proline levels under stress is regulated by non-photosynthetic events. — Biol. Plant. 45: 629–632, 2002.

    Article  CAS  Google Scholar 

  • Beak, K.H., Skinner, D.Z.: Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. — Plant Sci. 165: 1221–1227, 2003.

    Article  CAS  Google Scholar 

  • Chaitanya, K.V., Rasineni, G.K., Reddy, A.R.: Biochemical responses to drought stress in mulberry (Morus alba L.): Evaluation of proline, glycine betaine and abscisic acid accumulation in five cultivars. — Acta Physiol. Plant. 31: 437–443, 2009.

    Article  CAS  Google Scholar 

  • Chinnusamy, V., Jagendorf, A., Zhu, J.K.: Understanding and improving salt tolerance in plants. — Crop Sci. 45: 437–448, 2005.

    Article  CAS  Google Scholar 

  • De Campos, M.K.F., De Carvalho, K., De Souza, F.S., Marur, C.J., Pereira, L.F.P., Filho, J.C.B., Vieira, L.G.E.: Drought tolerance and antioxidant enzymatic activity in transgenic ’swingle’ citrumelo plants over-accumulating proline. — Environ. exp. Bot. 72: 242–250, 2011.

    Article  CAS  Google Scholar 

  • De Carvalho, K., De Campos, M.K.F., Domingues, D.S., Pereira, L.F.P., Vieira, L.G.E.: The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. — Mol. Biol. Rep. 40: 3269–3279, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Delauney, A.J., Verma, D.P.S.: Proline biosynthesis and osmoregulation in plants. — Plant J. 4: 215–223, 1993.

    Article  CAS  Google Scholar 

  • De Ronde, J.A., Cress, W.A., Krüger, G.H., Strasser, R.J., Van, S.J.: Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. — J. Plant Physiol. 161: 1211–1224, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Desikan, R., Neill, S.J., Hancock, J.T.: Hydrogen peroxideinduced gene expression in Arabidopsis thaliana. — Free Radicals Biol. Med. 28: 773–778, 2000.

    Article  CAS  Google Scholar 

  • Deuschle, K., Funck, D., Forlani, G., Stransky, H., Biehl, A., Leister, D., Graaff, E., Kunze, R., Frommer, W.B.: The role of [δ]1-pyrroline-5-carboxylate dehydrogenase in proline degradation. — Plant Cell 16: 3413–3425, 2004.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Emamverdian, A., Ding, Y., Mokhberdoran, F., Xie1, Y.: Heavy metal stress and some mechanisms of plant defense response. — Sci. World J. 2015: 1–18, 2015.

    Article  Google Scholar 

  • Fabro, G., Kovács, I., Pavet, V., Szabados, L., Alvarez, M.E.: Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. — Mol. Plant Microbe Interact. 17: 343–350, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Filippou, P., Bouchagier, P., Skotti, E., Fotopoulos, V.: Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. — Environ. exp. Bot. 97: 1–10, 2014.

    Article  CAS  Google Scholar 

  • Fujita, T., Maggio, A., Garcia-Rios, M., Bressan, R.A., Csonka, L.N.: Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes delta for δ-pyrroline-5-carboxylate synthase from tomato. — Plant Physiol. 118: 661–674, 1998.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Funck, D., Stadelhofer, B., Koch, W.: Ornithine-deltaaminotransferase is essential for arginine catabolism but not for proline biosynthesis. — BMC Plant Biol. 8: 40, 2008.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ghars, M.A., Richard, L., Lefebvre-De Vos, D., Leprince, A.S., Parre, E., Bordenave, M., Abdelly, C., Savoure, A.: Phospholipases C and D modulate proline accumulation in Thellungiella halophila/salsuginea differently according to the severity of salt or hyperosmotic stres. — Plant Cell Physiol. 53: 183–192, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Grallath, S., Weimar, T., Meyer, A., Gumy, C., Suter-Grotemeyer, M., Neuhaus, J.M., Rentsch, D.: The AtProT family: compatible solute transporters with similar substrate specificity but differential expression patterns. — Plant Physiol. 137: 117–126, 2005.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guo, P., Baum, M., Grando, S., Ceccarelli, S., Bai, G., Li, R., Korff, M., Varshney, R.K., Graner, A., Valkoun, J.: Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. — J. exp. Bot. 60: 3531–3544, 2009.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hanson, J., Hanssen, M., Wiese, A., Hendriks, M.M.W.B., Smeekens, S.: The sucrose regulated transcription factor bZIPII affects amino acid metabolism by regulating the expression of asparagine synthetase and proline dehydrogenase. — Plant J. 53: 935–949, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Hare, P.D., Cress, W.A.: Metabolic implications of stressinduced proline accumulation in plants. — Plant Growth Regul. 21: 79–102, 1997.

    Article  CAS  Google Scholar 

  • Hare, P.D., Cress, W.A., Van, S.J.: Dissecting the roles of osmolyte accumulation during stress. — Plant Cell Environ. 21: 535–553, 1998.

    Article  CAS  Google Scholar 

  • Hayashi, F., Ichino, T., Osanai, M., Wada, K.: Oscillation and regulation of proline content by P5CS and ProDH gene expressions in the light dark cycles in Arabidopsis thaliana L. — Plant Cell Physiol. 41: 1096–1101, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., Ahmad, A.: Role of proline under changing environments. — Plant Signal. Behav. 7: 1456–1466, 2012.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hebbelmann, I., Selinski, J., Wehmeyer, C., Goss, T., Voss, I., Mulo, P., Kangasjärvi, S., Aro, E.M., Oelze, M.L., Dietz, K.J., Adriano, N.N., Do, P.T., Fernie, A.R., Sai, K.T., Raghavendra, A.S., Linke, V., Scheibe, R.: Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase. — J. exp. Bot. 63: 1445–1459, 2012.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hoque, M.A., Banu, M.N.A., Okuma, E., Amako, K., Nakamura, Y., Shimoishi, Y.: Exogenous proline and glycinebetaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco bright yellow-2 suspension-cultured cells. — J. Plant Physiol. 164: 1457–1468, 2007a.

    Article  PubMed  CAS  Google Scholar 

  • Hoque, M.A.O.E., Banu, M.N.A., Nakamura, Y., Shimoishi, Y., Murata, Y.: Exogenous proline mitigates the detrimental effects of salt stress more than the betaine by increasing antioxidant enzyme activities. — J. Plant Physiol. 164: 553–561, 2007b.

    Article  PubMed  CAS  Google Scholar 

  • Hu, C.A., Delauney, A.J., Verma, D.P.: A bifunctional enzyme (δ 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. — Proc. nat. Acad. Sci. USA 89: 9354–9358, 1992.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hur, J., Jung, K.H., Lee, C.H., An, G.: Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. — Plant Sci. 167: 417–426, 2004.

    Article  CAS  Google Scholar 

  • Ignatova, Z., Gierasch, L.M.: Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. — Proc. nat. Acad. Sci. USA 103: 13357–13361, 2006.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Joseph, E.A., Radhakrishnan, V.V., Mohanan, K.V.: A study on the accumulation of proline — an osmoprotectant amino acid under salt stress in some native rice cultivars of North Kerala, India. — Univ. J. agr. Res. 3: 15–22, 2015.

    Google Scholar 

  • Kamran, M., Shahbaz, M., Ashraf, M., Akram, N.A.: Alleviation of drought-induced adverse effects in spring wheat (Triticum aestivum L.) using proline as a pre-sowing seed treatment. — Pak. J. Bot. 41: 621–632, 2009.

    Google Scholar 

  • Kanade, M.: Effect of foliar application of salicylic acid on polyphenol, proline and carbohydrates content in wheat and sorghum. — Adv. Plant Sci. 21: 321–322, 2008.

    CAS  Google Scholar 

  • Karthikeyan, A., Pandian, S. K., Ramesh, M.: Transgenic indica rice cv. ADT 43 expressing a 1-pyrroline-5-carboxylate synthetase (P5CS) gene from Vigna aconitifolia demonstrates salt tolerance. — Plant Cell Tissue Organ Cult. 107: 383–395, 2011.

    Article  CAS  Google Scholar 

  • Kaul, S., Sharma, S.S., Mehta, I.K.: Free radical scavenging potential of L-proline: evidence from in vitro assays. — Amino Acids 34: 315–320, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Kaushal, N., Gupta, K., Bhandhari, K., Kumar, S., Thakur, P., Nayyar, H.: Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism. — Physiol. mol. Biol. Plants 17: 203–213, 2011.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Khedr, A.H., Abbas, M.A., Wahid, A.A., Quick, W.P., Abogadallah, G.M.: Proline induces the expression of saltstress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. — J. exp. Bot. 54: 2553–2562, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Kiran, U., Abdin, M.Z.: Computational predictions of common transcription factor binding sites on the genes of proline metabolism in plants. — Bioinformation 8: 886–890, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kishor, P., Hong, Z., Miao, G.H., Hu, C., Verma, D.: Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. — Plant Physiol. 108: 1387–1394, 1995.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kishor, P.B.K., Sangam, S., Amrutha, R.N., Laxmi, P.S., Naidu, K.R., Rao, K.R.S.S., Rao, S., Reddy, K.J., Theriappan, P., Sreenivasulu, N.P.B.: Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. — Curr. Sci. 88: 424–438, 2005.

    CAS  Google Scholar 

  • Krishna, G., Reddy, P.S., Ramteke, P.W., Rambabu, P., Tawar, K.B., Bhattacharya, P.: Agrobacterium-mediated genetic transformation of pigeonpea (Cajanus cajan (L.) Millsp.) for resistance to legume pod borer Helicoverpa armigera. — J. Crop Sci. Biotechnol. 14: 197–204, 2011.

    Article  Google Scholar 

  • Kumar, V., Shriram, V., Kavi Kishor, P.B., Jawali, N., Shitole, M.G.: Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. — Plant Biotechnol. Rep. 4: 37–48, 2010.

    Article  Google Scholar 

  • Larher, F., Leport, L., Petrivalsky, M., Chappart, M.: Effectors for the osmoinduced proline response in higher plants. — Plant Physiol. Biochem. 31: 911–922, 1993.

    CAS  Google Scholar 

  • Lehmann, S., Gumy, C., Blatter, E., Boeffel S., Fricke, W., Rentsch, D.: In planta function of compatible solute transporters of the AtProT family. — J. exp. Bot. 62: 787–796, 2011.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lopez, A.O., Chang, H.C., Bush, D.R.: Amino acid transporters in plants. — Biochem. biophys. Acta 1465: 275–280, 2000.

    Article  Google Scholar 

  • Mani, S., Van de Cotte, B., Van Montagu, M., Verbruggen, N.: Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. — Plant Physiol. 128: 73–83, 2002.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Martino, C.D., Pizzuto, R., Pallotta, M.L., Santis, A.D., Passarella, S.: Mitochondrial transport in proline catabolism in plants: the existence of two separate translocators in mitochondria isolated from durum wheat seedlings. — Planta 223: 1123–1133, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Masoud, Z., Arash, A., Shorangiz, J.: Proline metabolite transport an efficient approach in corn yield improvement as response to drought conditions. — J. Agr. environ. Sci. 13: 1632–1641, 2013.

    Google Scholar 

  • Mattioli, R., Marchese, D., D’Angeli, S., Altamura, M.M., Costantino, P., Trovato, M.: Modulation of intracellular proline levels affects flowering time and inflorescence architecture in Arabidopsis. — Plant mol. Biol. 66: 277–288, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Matysik, J., Alia, Bhalu, B., Mohanty, P.: Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plans. — Curr. Sci. 82: 525–532, 2002.

    CAS  Google Scholar 

  • Miller, G., Honig, A., Stein, H., Suzuki, N., Mittler, R., Zilberstein, A.: Unraveling delta 1-pyrroline-5-carboxylate proline cycle in plants by uncoupled expression of proline oxidation enzymes. — J. biol. Chem. 284: 26482–26492, 2009.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Misra, N., Saxena, P.: Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. — Plant Sci. 177: 181–189, 2009.

    Article  CAS  Google Scholar 

  • Molinari, H.B., Marur, C.J., Filho, J.C., Kobayashi, A.K., Pileggi, M., Júnior, R.P., Pereira, L.F., Vieira, L.G.: Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) overproducing proline. — Plant Sci. 167: 1375–1381, 2004.

    Article  CAS  Google Scholar 

  • Molla, M.R., Ali, M.R., Hasanuzzaman, M., Al-Mamun, M.H., Ahmed, A., Nazim-Ud-Dowla, M.A.N., Rohman, M.M.: Exogenous proline and betaine-induced upregulation of glutathione transferase and glyoxalase I in lentil (Lens culinaris) under drought stress. — Not. Bot. Hort. Agrobot. 42: 73–80, 2014.

    CAS  Google Scholar 

  • Murahama, M., Yoshida, T., Hayashi, F., Ichino, T., Sanada, Y., Wada, K.: Purification and characterization of δ1-pyrroline-5-carboxylate reductase isoenzymes, indicating differential distribution in spinach (Spinacia oleracea L.) leaves. — Plant Cell Physiol. 42: 742–750, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima, K., Satoh, R., Kiyosue, T., Yamaguchi-Shinozaki, K., Shinozaki, K.: A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity, but is also developmentally regulated in the reproductive organs of Arabidopsis. — Plant Physiol. 118: 1233–1241, 1998.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K., Shinozaki, K.: Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. — FEBS. Lett. 461: 205–210, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Neill, S.J., Desikan, R., Clarke, A., Hurst, R.D., Hancock, J.T.: Hydrogen peroxide and nitric oxide as signalling molecules in plants. — J. exp. Bot. 53: 1237–1242, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Oono, Y., Ooura, C., Rahman, A., Aspuria, E.T., Hayashi, K., Tanaka, A., Uchimiya, H.: p-clorophenoxyisobutyric acid impairs auxin response in Arabidopsis root. — Plant Physiol. 133: 1135–1147, 2003.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Palmieri, L., Todd, C.D., Arrigoni, R., Hoyos, M. E., Santoro, A., Polacco, J.C., Palmieri, F.: Arabidopsis mitochondria have two basic amino acid transporters with partially overlapping specificities and differential expression in seedling development. — Biochem. biophys. Acta 1757: 1277–1283, 2006.

    PubMed  CAS  Google Scholar 

  • Parre, E., Ghars, M.A., Leprince, A.S., Thiery, L., Lefebvre, D., Bordenave, M., Richard, L., Mazars, C., Abdelly, C., Savouré, A.: Calcium signaling via phospholipase C is essential for proline accumulation upon ionic but not nonionic hyperosmotic stresses in Arabidopsis. — Plant Physiol. 144: 503–512, 2007.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Patade, V.Y., Lokhande, V.H., Suprasanna, P.: Exogenous application of proline alleviates salt induced oxidative stress more efficiently than glycine betaine in sugarcane cultured cells. — Sugar Technol. 16: 22–29, 2014.

    Article  CAS  Google Scholar 

  • Prasad, V., Satyavathi, V.V., Sanjaya, Valli K.M., Khandelwal A., Shaila, M.S., Sita, G.L.: Expression of biologically active hemagglutinin-neuraminidase protein 4 of peste des petits ruminants virus in transgenic pigeon pea (Cajanus cajan (L.) Millsp.). — Plant Sci. 166: 199–205, 2004.

    Article  CAS  Google Scholar 

  • Rejeb, K.B., Abdelly, C., Savouré, A.: How reactive oxygen species and proline face stress together. — Plant Physiol. Biochem. 80: 278–284, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Ribarits, A., Abdullaev, A., Tashpulatov, A., Richter, A., Heberle-Bors, E., Touraev, A.: Two tobacco proline dehydrogenases are differentially regulated and play a role in early plant development. — Planta 225: 1313–1324, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Rocha, I.M.A., Vitorello, V.A., Silva, J.S., Ferreira-Silva, S.L., Viégas, R.A., Silva, E.N., Silveira, J.A.G.: Exogenous ornithine is an effective precursor and the δ-ornithine amino transferase pathway contributes to proline accumulation under high N recycling in salt-stressed cashew leaves. — J. Plant Physiol. 169: 41–49, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Roosens, N.H., Al Bitar, F., Loenders, K., Angenon, G., Jacobs, M.: Overexpression of ornithine-delta-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. — Mol. Breed. 9: 73–80, 2002.

    Article  CAS  Google Scholar 

  • Sánchez, E., López-Lefebre, L.R., García, P.C., Rivero, R.M., Ruiz, J.M., Romero, L.: Proline metabolism in response to highest nitrogen dosages in green bean plants (Phaseolus vulgaris L. cv. Strike). — J. Plant Physiol. 158: 593–598, 2001.

    Article  Google Scholar 

  • Sarkar, D., Bhowmika, P.C., Kwon, Y., Shetty, K.: The role of proline-associated pentose phosphate pathway in coolseason turfgrasses after UV-B exposure. — Environ. exp. Bot. 70: 251–258, 2011.

    Article  CAS  Google Scholar 

  • Satoh, R., Nakashima, K., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: ACTCAT, a novel cis-acting element for proline- and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. — Plant Physiol. 130: 709–719, 2002.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Savouré, A., Jaoua, S., Hua, X.J., Ardiles, W., Van Montagu, M., Verbruggen, N.: Isolation, characterization, and chromosomal location of gene coding the delta-1-pyrrolinecarboxylate synthetase Arabidopsis thaliana. — FEBS Lett. 372: 13–19, 1995.

    Article  PubMed  Google Scholar 

  • Sharma, S., Verslues, P.E.: Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. — Plant Cell Environ. 33: 1838–51, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Shetty, K.: OPPP and photosynthetic carbon reduction cycle provides carbon in the form of erythrose-4-phosphate, which together with phosphoenolpyruvate acts as a precursor for phenylalanine biosynthesis via the shikimic acid pathway. — Proc. Biochem. 39: 789–804, 2004.

    Article  CAS  Google Scholar 

  • Shetty, K.: Biotechnology to harness the benefits of dietary phenolics: focus on Lamiaceae. — Asia Pacific J. Clin. Nutr. 6: 162–171, 1997.

    CAS  Google Scholar 

  • Signorelli, S., Coitin, O, E.L., Borsani, O., Monza, J.: Molecular mechanisms for the reaction between -OH radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress. — J. phys. Chem. 118: 37–47, 2014.

    Article  CAS  Google Scholar 

  • Signorelli, S., Arellano, J. B., Melo, T. B., Borsani, O., Monza, J.: Proline does not quench singlet oxygen: evidence to reconsider its protective role in plants. — Plant Physiol. Biochem. 64: 80–83, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Silva-Ortega, C.O., Ochoa-Alfaro, A.E., Reyes-Agüero, J.A., Aguado-Santacruz, G.A., Jiménez-Bremont, J.F.: Salt stress increases the expression of P5CS gene and induces proline accumulation in cactus pear. — Plant Physiol. Biochem. 46: 82–92, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Sivakumar, P., Sharmila, P., Saradhi, P.P.: Proline alleviates salt-stress induced enhancement in ribulose-1,5-bisphosphate oxygenase activity. — Biochem. biophys. Res. Commun. 279: 512–515, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff, N., Cumbes, Q.J.: Hydroxyl radical scavenging activity of compatible solutes. — Phytochemistry 28: 1057–1060, 1989.

    Article  CAS  Google Scholar 

  • Song, S.Q., Lei, Y.B., Tian, X.R.: Proline metabolism and cross tolerance to salinity and heat stress in geminating wheat seed. — Russ. J. Plant Physiol. 52: 897–904, 2005.

    Article  CAS  Google Scholar 

  • Spielbauer, G., Li, L., Römisch, M.L., Do, P.T., Fouquet, R., Fernie, A.R., Eisenreich, W., Gierl, A., Settles, A.M.: Chloroplast-localized 6-phosphogluconate dehydrogenase is critical for maize endosperm starch accumulation. — J. exp. Bot. 1–12, 2013.

  • Srinivas, V., Balasubramanian, D.: Proline is a proteincompatible hydrotrope. — Langmuir ai]11: 2830–2833, 1995.

    Article  CAS  Google Scholar 

  • Stein, H., Honig, A., Miller, G., Erster, O., Eilenberg, H., Csonka, L.N., Szabados, L., Koncz, C., Zilberstein, A.: Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants. — Plant Sci. 181: 140–150, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Strizhov, N., Abraham, E., Okresz, L., Blickling, S., Zilberstein, A., Schell, J., Koncz, C., Szabados, L.: Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. — Plant J. 12: 557–569, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Su, M., Li, X.F., Ma, X.Y., Peng, X.J., Zhao, A.G., Cheng, L.Q., Chen, S.Y., Liu, G.S.: Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment. — Plant Sci. 181: 652–659, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Szabados, L., Savoure, A.: Proline: a multifunctional amino acid. — Trends Plant Sci. 15: 1360–1385, 2009.

    Google Scholar 

  • Székely, G., Abraham, E., Cselo, A., Rigo, G., Zsigmond, L., Csiszar, J., Ayaydin, F., Strizhov, N., Jasik, J., Schmelzer, E., Koncz, C., Szabados, L.: Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. — Plant J. 53: 11–28, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Szoke, A., Miao, G.H., Hong, Z.L., Verma, D.P.S.: Subcellular location of Δ1-pyrroline-5-carboxylate reductase in root/nodule and leaf of soybean. — Plant Physiol. 99: 1642–1649, 1992.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Taiz, L., Zeiger, E. (ed.): Plant Physiology. — Sinauer Associates, Sunderland 2010.

    Google Scholar 

  • Thiery, L., Leprince, A., Lefebvre, D., Ghars, M.A., Debarbieux, E., Savouré, A.: Phospholipase D is a negative regulator of proline biosynthesis in Arabidopsis thaliana. — J. biol. Chem. 279: 14812–14818, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Usha, K., Malik, Z.A.: Computational predictions of common transcription factor binding sites on the genes of proline metabolism in plants. — Bioinformation 8: 886–890, 2012.

    Article  Google Scholar 

  • Verbruggen, N., Hermans, C.: Proline accumulation in plants: a review. — Amino Acids 35: 753–759, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Verslues, P.E., Bray, E.A.: Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential induced ABA and proline accumulation. — J. exp. Bot. 57: 201–212, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Verslues, P.E., Sharma, S.: Proline metabolism and its implications for plant-environment interaction. — Arabidopsis Book 8: 140, 2010.

    Article  Google Scholar 

  • Viehweger, K.: How plants cope with heavy metals. — Bot. Studies 55: 1–12, 2014.

    Article  CAS  Google Scholar 

  • Voetberg, G.S., Sharp, R.E.: Growth of the maize primary root at low water potentials. — Plant Physiol. 96: 1125–1130, 1991.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vogel, H.J., Davis, B.D.: Glutamic-γ-semialdehyde and δ′-pyrroline-5-carboxylic acid, intermediates in the biosynthesis of proline. — Amer. J. chem. Soc. 74: 109–112, 1952.

    Article  CAS  Google Scholar 

  • Waditee, R., Hibino, T., Tanaka, Y., Nakamura, T., Incharoensakdi, A., Hayakawa, S., Suzuki, S., Futsuhara, Y., Kawamitsu, Y., Takabe, T.: Functional characterization of betaine/proline transporters in betaine-accumulating mangrove. — J. biol. Chem. 277: 18373–18382, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Weltmeier, F., Ehlert, A., Mayer, C.S., Dietrich, K., Wang, X., Schiitze, K., Alonso, R., Harter, K., Vicente-Carbajosa, J., Droge-Laser, W.: Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors. — EMBO J. 25: 3133–3143, 2006.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Woo, S.Y., Lee, D.K., Lee, Y.K.: Net photosynthetic rate, ascorbate peroxidase and glutathione reductase activities of Erythrina orientalis in polluted and non-polluted areas. — Photosynthetica 45: 293–295, 2007.

    Article  CAS  Google Scholar 

  • Wu, L.Q., Fan, Z.M., Guo, L., Li, Y.Q., Zhang, W.J., Qu, L.J., Chen, Z.L.: Over-expression of an Arabidopsis delta-OAT gene enhances salt and drought tolerance in transgenic rice. — Chin. Sci. Bull. 48: 2594–2600, 2003.

    Article  CAS  Google Scholar 

  • Xu, J., Yin, H.X., Li, X.: Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L. — Plant Cell Rep. 28: 325–333, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Xue, X., Liu, A., Hua, X.: Proline accumulation and transcriptional regulation of proline biosynthesis and degradation in Brassica napus. — BMB Rep. 42: 28–34, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Yang, L.A., Ji, W., Zhu, Y.M., Gao, P., Li, Y., Cai, H., Bai, X., Guo, D.J.: GsCBRLK, a calcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress. — J. exp. Bot. 61: 2519–2533, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Yan, Z., Guo, S., Shu, S., Sun, J., Tezuka, T.: Effects of proline on photosynthesis, root reactive oxygen species (ROS) metabolism in two melon cultivars (Cucumis melo L.) under NaCl stress. — Afr. J. Biotechnol. 10: 18381–18390, 2011.

    Article  CAS  Google Scholar 

  • Yu, C., Claybrook, D.L., Huang, A.H.: Transport of glycine, serine, and proline into spinach leaf mitochondria. — Arch. Biochem. Biophys. 227: 180–187, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Yusuf, M., Syed, A.H., Barket, A., Shamsul, H., Qazi, F., Aqil, A.: Effect of salicylic acid on salinity-induced changes in Brassica juncea. — J. Integr. Plant BioI. 50: 1096–1102, 2008.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Asthir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, G., Asthir, B. Proline: a key player in plant abiotic stress tolerance. Biol Plant 59, 609–619 (2015). https://doi.org/10.1007/s10535-015-0549-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-015-0549-3

Additional key words

Navigation