Skip to main content

Advertisement

Log in

On the role of the mitochondrial 2-oxoglutarate dehydrogenase complex in amino acid metabolism

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Mitochondria are tightly linked to cellular nutrient sensing, and provide not only energy, but also intermediates for the de novo synthesis of cellular compounds including amino acids. Mitochondrial metabolic enzymes as generators and/or targets of signals are therefore important players in the distribution of intermediates between catabolic and anabolic pathways. The highly regulated 2-oxoglutarate dehydrogenase complex (OGDHC) participates in glucose oxidation via the tricarboxylic acid cycle. It occupies an amphibolic branch point in the cycle, where the energy-producing reaction of the 2-oxoglutarate degradation competes with glutamate (Glu) synthesis via nitrogen incorporation into 2-oxoglutarate. To characterize the specific impact of the OGDHC inhibition on amino acid metabolism in both plant and animal mitochondria, a synthetic analog of 2-oxoglutarate, namely succinyl phosphonate (SP), was applied to living systems from different kingdoms, both in situ and in vivo. Using a high-throughput mass spectrometry-based approach, we showed that organisms possessing OGDHC respond to SP by significantly changing their amino acid pools. By contrast, cyanobacteria which lack OGDHC do not show perturbations in amino acids following SP treatment. Increases in Glu, 4-aminobutyrate and alanine represent the most universal change accompanying the 2-oxoglutarate accumulation upon OGDHC inhibition. Other amino acids were affected in a species-specific manner, suggesting specific metabolic rearrangements and substrate availability mediating secondary changes. Strong perturbation in the relative abundance of amino acids due to the OGDHC inhibition was accompanied by decreased protein content. Our results provide specific evidence of a considerable role of OGDHC in amino acid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Araújo WL, Nunes-Nesi A, Trenkamp S, Bunik VI, Fernie AR (2008) Inhibition of 2-oxoglutarate dehydrogenase in potato tuber suggests the enzyme is limiting for respiration and confirms its importance in nitrogen assimilation. Plant Physiol 148(4):1782–1796. doi:10.1104/pp.108.126219

    Article  PubMed  Google Scholar 

  • Araújo WL, Tohge T, Ishizaki K, Leaver CJ, Fernie AR (2011) Protein degradation—an alternative respiratory substrate for stressed plants. Trends Plant Sci 16(9):489–498. doi:10.1016/j.tplants.2011.05.008

    PubMed  Google Scholar 

  • Araújo WL, Tohge TL, Nunes-Nesi A, Daloso DM, Nimick M, Krahnert I, Bunik VI, Moorhead G, Fernie A (2012) Phosphonate analogs of 2-oxoglutarate perturb metabolism and gene expression in illuminated Arabidopsis leaves. Front Plant Sci 3:114. doi:10.3389/fpls.2012.00114

    PubMed  Google Scholar 

  • Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T (2007) Altered metabolic flux due to deletion of odhA causes l-glutamate overproduction in Corynebacterium glutamicum. Appl Environ Microbiol 73(4):1308–1319. doi:10.1128/aem.01867-06

    Article  PubMed  CAS  Google Scholar 

  • Bauwe H, Hagemann M, Fernie AR (2010) Photorespiration: players, partners and origin. Trends Plant Sci 15(6):330–336. doi:10.1016/j.tplants.2010.03.006

    Article  PubMed  CAS  Google Scholar 

  • Bettendorff L, Peeters M, Jouan C, Wins P, Schoffeniels E (1991) Determination of thiamin and its phosphate esters in cultured neurons and astrocytes using an ion-pair reversed-phase high-performance liquid chromatographic method. Anal Biochem 198(1):52–59. doi:10.1016/0003-2697(91)90505-n

    Article  PubMed  CAS  Google Scholar 

  • Bott M (2007) Offering surprises: TCA cycle regulation in Corynebacterium glutamicum. Trends Microbiol 15(9):417–425. doi:10.1016/j.tim.2007.08.004

    Article  PubMed  CAS  Google Scholar 

  • Brauc S, De Vooght E, Claeys M, Höfte M, Angenon G (2011) Influence of over-expression of cytosolic aspartate aminotransferase on amino acid metabolism and defence responses against Botrytis cinerea infection in Arabidopsis thaliana. J Plant Physiol 168(15):1813–1819. doi:10.1016/j.jplph.2011.05.012

    Article  PubMed  CAS  Google Scholar 

  • Brown GC (1992) Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J 284:1–13

    PubMed  CAS  Google Scholar 

  • Bunik VI, Fernie AR (2009) Metabolic control exerted by the 2-oxoglutarate dehydrogenase reaction: a cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation. Biochem J 422(3):405–421. doi:10.1042/bj20090722

    Article  PubMed  CAS  Google Scholar 

  • Bunik VI, Strumilo S (2009) Regulation of catalysis within cellular network: metabolic and signaling implications of the 2-oxoglutarate oxidative decarboxylation. Curr Chem Biol 3(3):279–290. doi:10.2174/187231309789054904

    CAS  Google Scholar 

  • Bunik VI, Biryukov AI, Zhukov YN (1992) Inhibition of pigeon breast muscle alpha-ketoglutarate dehydrogenase by phosphonate analogues of alpha-ketoglutarate. FEBS Lett 303(2–3):197–201. doi:10.1016/0014-5793(92)80518-l

    Article  PubMed  CAS  Google Scholar 

  • Bunik VI, Denton TT, Xu H, Thompson CM, Cooper AJL, Gibson GE (2005) Phosphonate analogs of α-ketoglutarate inhibit the activity of the α-ketoglutarate dehydrogenase complex isolated from brain and in cultured cells. Biochemistry 44:10552–10561

    Article  PubMed  CAS  Google Scholar 

  • Bunik VI, Lovat M, Groznaya A, Graf A, Dunaeva T, Trofimova L, Sokolova N (2009) Succinyl phosphonate, a protector of the 2-oxoglutarate dehydrogenase complex, corrects behavioral impairments in rats exposed to hypoxia or ethanol. Alzheimers Dement 5(4, Supplement 1):P476–P477. doi:10.1016/j.jalz.2009.04.721

    Article  Google Scholar 

  • Butow RA, Avadhani NG (2004) Mitochondrial signaling: the retrograde response. Mol Cell 14(1):1–15

    Article  PubMed  CAS  Google Scholar 

  • Cheshchevik V, Janssen AJM, Dremza IK, Zavodnik IB, Bunik VI (2010) The OGDHC-exerted control of mitochondrial respiration is increased under energy demand. In: Renner-Sattler K, Gnaiger E (eds) Mitochondrial physiology—the many functions of the organism in our cells. Steiger Druck GmbH, Axams, pp 76–77

    Google Scholar 

  • Cooper AJL (2004) The role of glutamine transaminase K (GTK) in sulfur and alpha-keto acid metabolism in the brain, and in the possible bioactivation of neurotoxicants. Neurochem Int 44(8):557–577. doi:10.1016/j.neuint.2003.12.002

    Article  PubMed  CAS  Google Scholar 

  • Douce R, Bourguignon J, Neuburger M, Rébeillé F (2001) The glycine decarboxylase system: a fascinating complex. Trends Plant Sci 6(4):167–176. doi:10.1016/s1360-1385(01)01892-1

    Article  PubMed  CAS  Google Scholar 

  • Erban A, Schauer N, Fernie AR, Kopka J (2007) Nonsupervised construction and application of mass spectral and retention time index libraries from time-of-flight gas chromatography–mass spectrometry metabolite profiles. In: Weckwerth W (ed) Methods in molecular biology, vol 358. Humana Press, New York, pp 19–38. doi:10.1007/978-1-59745-244-1_2

    Google Scholar 

  • Fang M, Toogood RD, Macova A, Ho K, Franzblau SG, McNeil MR, Sanders DAR, Palmer DRJ (2010) Succinylphosphonate esters are competitive inhibitors of MenD that show active-site discrimination between homologous alpha-ketoglutarate-decarboxylating enzymes. Biochemistry 49(12):2672–2679. doi:10.1021/bi901432d

    Article  PubMed  CAS  Google Scholar 

  • Fernie AR, Roessner U, Trethewey RN, Willmitzer L (2001a) The contribution of plastidial phosphoglucomutase to the control of starch synthesis within the potato tuber. Planta 213(3):418–426. doi:10.1007/s004250100521

    Article  PubMed  CAS  Google Scholar 

  • Fernie AR, Roscher A, Ratcliffe RG, Kruger NJ (2001b) Fructose 2,6-bisphosphate activates pyrophosphate: fructose-6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells. Planta 212(2):250–263. doi:10.1007/s004250000386

    Article  PubMed  CAS  Google Scholar 

  • Graf A, Kabysheva M, Klimuk E, Trofimova L, Dunaeva T, Zündorf G, Kahlert S, Reiser G, Storozhevykh T, Pinelis V, Sokolova N, Bunik V (2009) Role of 2-oxoglutarate dehydrogenase in brain pathologies involving glutamate neurotoxicity. J Mol Catal B Enzym 61(1–2):80–87. doi:10.1016/j.molcatb.2009.02.016

    Article  CAS  Google Scholar 

  • Hanigan MH, Ricketts WA (1993) Extracellular glutathione is a source of cysteine for cells that express gamma-glutamyl transpeptidase. Biochemistry 32(24):6302–6306. doi:10.1021/bi00075a026

    Article  PubMed  CAS  Google Scholar 

  • Hou Y, Wang L, Ding B, Liu Y, Zhu H, Liu J, Li Y, Wu X, Yin Y, Wu G (2010) Dietary alpha-ketoglutarate supplementation ameliorates intestinal injury in lipopolysaccharide-challenged piglets. Amino Acids 39(2):555–564. doi:10.1007/s00726-010-0473-y

    Article  PubMed  CAS  Google Scholar 

  • Hou Y, Wang L, Ding B, Liu Y, Zhu H, Liu J, Li Y, Kang P, Yin Y, Wu G (2011) Alpha-ketoglutarate and intestinal function. Front Biosci 16:1186–1196. doi:10.2741/3783

    Article  PubMed  CAS  Google Scholar 

  • Iskakova MB, Szaflarski W, Dreyfus M, Remme J, Nierhaus KH (2006) Troubleshooting coupled in vitro transcription-translation system derived from Escherichia coli cells: synthesis of high-yield fully active proteins. Nucleic Acids Res 34(19). doi:e13510.1093/nar/gkl462

  • Kabysheva MS, Storozhevykh TP, Pinelis VG, Bunik VI (2009) Synthetic regulators of the 2-oxoglutarate oxidative decarboxylation alleviate the glutamate excitotoxicity in cerebellar granule neurons. Biochem Pharmacol 77(9):1531–1540. doi:10.1016/j.bcp.2009.02.001

    Article  PubMed  CAS  Google Scholar 

  • Karaca M, Frigerio F, Maechler P (2011) From pancreatic islets to central nervous system, the importance of glutamate dehydrogenase for the control of energy homeostasis. Neurochem Int 59(4):510–517. doi:10.1016/j.neuint.2011.03.024

    Article  PubMed  CAS  Google Scholar 

  • Kataoka M, Hashimoto KI, Yoshida M, Nakamatsu T, Horinouchi S, Kawasaki H (2006) Gene expression of Corynebacterium glutamicum in response to the conditions inducing glutamate overproduction. Lett Appl Microbiol 42(5):471–476. doi:10.1111/j.1472-765X.2006.01905.x

    Article  PubMed  CAS  Google Scholar 

  • Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21(8):1635–1638. doi:10.1093/bioinformatics/bti236

    Article  PubMed  CAS  Google Scholar 

  • Krall L, Huege J, Catchpole G, Steinhauser D, Willmitzer L (2009) Assessment of sampling strategies for gas chromatography–mass spectrometry (GC-MS) based metabolomics of cyanobacteria. J Chromatogr B 877(27):2952–2960. doi:10.1016/j.jchromb.2009.07.006

    Article  CAS  Google Scholar 

  • Kuhara T, Inoue Y, Ohse M, Krasnikov B, Cooper A (2011) Urinary 2-hydroxy-5-oxoproline, the lactam form of α-ketoglutaramate, is markedly increased in urea cycle disorders. Anal Bioanal Chem 400(7):1843–1851. doi:10.1007/s00216-011-4688-x

    Article  PubMed  CAS  Google Scholar 

  • Kwon H-B, Sabatini BL (2011) Glutamate induces de novo growth of functional spines in developing cortex. Nature 474(7349):100–104. doi:10.1038/nature09986

    Article  PubMed  CAS  Google Scholar 

  • Laurent S, Chen H, Bédu S, Ziarelli F, Peng L, Zhang C-C (2005) Nonmetabolizable analogue of 2-oxoglutarate elicits heterocyst differentiation under repressive conditions in Anabaena sp. PCC 7120. Proc Nat Acad Sci USA 102(28):9907–9912. doi:10.1073/pnas.0502337102

    Article  PubMed  CAS  Google Scholar 

  • Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1(1):387–396. doi:10.1038/nprot.2006.59

    Article  PubMed  CAS  Google Scholar 

  • Luedemann A, Strassburg K, Erban A, Kopka J (2008) TagFinder for the quantitative analysis of gas chromatography–mass spectrometry (GC–MS)-based metabolite profiling experiments. Bioinformatics 24(5):732–737. doi:10.1093/bioinformatics/btn023

    Article  PubMed  CAS  Google Scholar 

  • Lytovchenko A, Beleggia R, Schauer N, Isaacson T, Leuendorf JE, Hellmann H, Rose JKC, Fernie AR (2009) Application of GC–MS for the detection of lipophilic compounds in diverse plant tissues. Plant Methods 5: Article number 4. doi:10.1186/1746-4811-5-4

  • McCandless DW (1982) Energy metabolism in the lateral vestibular nucleus in pyrithiamin-induced thiamin deficiency. Ann N Y Acad Sci 378:355–364. doi:10.1111/j.1749-6632.1982.tb31210.x

    Article  PubMed  CAS  Google Scholar 

  • Mkrtchyan G, Merkushina K, Kudryavtsev P, Trofimova L, Graf N, Bunik V (2011) Brain thiamine status as an indicator of the brain functional state and response to acute hypoxia. In: Nikitina TV (ed) Warum Deutschland? Perspektiven Internationalen Zusammenarbeit Im Bereich Wissenschaft, Ausbildung, Kultur, Wirtschaft Und Politik. Elibrary Finec, Sankt-Peterburg, pp 197–202. http://elibrary.finec.ru/materials_files/360077028.pdf#page=197

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Niebisch A, Kabus A, Schultz C, Weil B, Bott M (2006) Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J Biol Chem 281(18):12300–12307. doi:10.1074/jbc.M512515200

    Article  PubMed  CAS  Google Scholar 

  • Nilsen LH, Shi Q, Gibson GE, Sonnewald U (2011) Brain [U-13C]glucose metabolism in mice with decreased α-ketoglutarate dehydrogenase complex activity. J Neurosci Res 89(12):1997–2007. doi:10.1002/jnr.22606

    Article  PubMed  CAS  Google Scholar 

  • O’Brien TA, Kluger R, Pike DC, Gennis RB (1980) Phosponate analogs of pyruvate-probes of substrate binding to pyruvate oxidase and other thiamin pyrophosphate-dependent decarboxylases. Biochim Biophys Acta 613(1):10–17. doi:10.1016/0005-2744(80)90186-2

    Article  PubMed  Google Scholar 

  • Orlowski M, Meister A (1970) The γ-glutamyl cycle: a possible transport system for amino acids. Proc Nat Acad Sci USA 67(3):1248–1255. http://www.pnas.org/content/67/3/1248.abstract

  • Rakhmanova T, Popova T (2006) Regulation of 2-oxoglutarate metabolism in rat liver by NADP-isocitrate dehydrogenase and aspartate aminotransferase. Biochemistry (Moscow) 71(2):211–217. doi:10.1134/s0006297906020143

    Article  CAS  Google Scholar 

  • Reissner KJ, Kalivas PW (2010) Using glutamate homeostasis as a target for treating addictive disorders. Behav Pharmacol 21(5–6):514–522. doi:10.1097/FBP.0b013e32833d41b2

    Article  PubMed  CAS  Google Scholar 

  • Rocha M, Licausi F, Araújo WL, Nunes-Nesi A, Sodek L, Fernie AR, van Dongen JT (2010) Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus. Plant Physiol 152(3):1501–1513. doi:10.1104/pp.109.150045

    Article  PubMed  CAS  Google Scholar 

  • Rolfe DFS, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77(3):731–758

    PubMed  CAS  Google Scholar 

  • Runquist M, Kruger NJ (1999) Control of gluconeogenesis by isocitrate lyase in endosperm of germinating castor bean seedlings. Plant J 19(4):423–431. doi:10.1046/j.1365-313X.1999.00533.x

    Article  PubMed  CAS  Google Scholar 

  • Sá Santos S, Gibson GE, Cooper AJL, Denton TT, Thompson CM, Bunik VI, Alves PM, Sonnewald U (2006) Inhibitors of the α-ketoglutarate dehydrogenase complex alter [1-13C]glucose and [U-13C]glutamate metabolism in cerebellar granule neuron. J Neurosci Res 83(3):450–458. doi:10.1002/jnr.20749

    Article  Google Scholar 

  • Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgren K, Roessner-Tunali U, Forbes MG, Willmitzer L, Fernie AR, Kopka J (2005) GC–MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett 579(6):1332–1337. doi:10.1016/j.febslet.2005.01.029

    Article  PubMed  CAS  Google Scholar 

  • Schultz C, Niebisch A, Gebel L, Bott M (2007) Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol 76(3):691–700. doi:10.1007/s00253-007-0933-9

    Article  PubMed  CAS  Google Scholar 

  • Schultz C, Niebisch A, Schwaiger A, Viets U, Metzger S, Bramkamp M, Bott M (2009) Genetic and biochemical analysis of the serine/threonine protein kinases PknA, PknB, PknG and PknL of Corynebacterium glutamicum: evidence for non-essentiality and for phosphorylation of OdhI and FtsZ by multiple kinases. Mol Microbiol 74(3):724–741. doi:10.1111/j.1365-2958.2009.06897.x

    Article  PubMed  CAS  Google Scholar 

  • Shi Q, Risa Ø, Sonnewald U, Gibson GE (2009) Mild reduction in the activity of the alpha-ketoglutarate dehydrogenase complex elevates GABA shunt and glycolysis. J Neurochem 109:214–221. doi:10.1111/j.1471-4159.2009.05955.x

    Article  PubMed  CAS  Google Scholar 

  • Shiio I, Ujigawa-Takeda K (1980) Presence and regulation of α-ketoglutarate dehydrogenase complex in a glutamate-producing bacterium, Brevibacterium flavum. Agricult Biol Chem 44(8):1897–1904. doi:10.1271/bbb1961.44.1897

    Article  CAS  Google Scholar 

  • Smith AC, Robinson AJ (2011) A metabolic model of the mitochondrion and its use in modelling diseases of the tricarboxylic acid cycle. BMC Syst Biol 5:102. doi:10.1186/1752-0509-5-102

    Article  PubMed  CAS  Google Scholar 

  • Swartz J (2006) Developing cell-free biology for industrial applications. J Ind Microbiol Biotechnol 33(7):476–485. doi:10.1007/s10295-006-0127-y

    Article  PubMed  CAS  Google Scholar 

  • Sweetlove LJ, Taylor NL, Leaver CJ (2007) Isolation of intact, functional mitochondria from the model plant Arabidopsis thaliana. Methods Mol Biol 372(1):125–136. doi:10.1007/978-1-59745-365-3_9

    Article  PubMed  CAS  Google Scholar 

  • Tatara M, Brodzki A, Krupski W, Sliwa E, Silmanowicz P, Majcher P, Pierzynowski S, Studzinski T (2005) Effects of alpha-ketoglutarate on bone homeostasis and plasma amino acids in turkeys. Poult Sci 84(10):1604–1609

    PubMed  CAS  Google Scholar 

  • Trofimova L, Lovat M, Groznaya A, Efimova E, Dunaeva T, Maslova M, Graf A, Bunik V (2010) Behavioral impact of the regulation of the brain 2-oxoglutarate dehydrogenase complex by synthetic phosphonate analog of 2-oxoglutarate: implications into the role of the complex in neurodegenerative diseases. Int J Alzheimers Dis. doi:10.4061/2010/749061 (Article ID 749061)

    PubMed  Google Scholar 

  • Viña JR, Palacin M, Puertes IR, Hernandez R, Vina J (1989) Role of the gamma-glutamyl cycle in the regulation of amino acid translocation. Am J Physiol 257(6):E916–E922

    PubMed  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37(1):1–17. doi:10.1007/s00726-009-0269-0

    Article  PubMed  Google Scholar 

  • Zeiger SLH, McKenzie JR, Stankowski JN, Martin JA, Cliffel DE (1802) McLaughlin B (2010) Neuron specific metabolic adaptations following multi-day exposures to oxygen glucose deprivation. Biochim Biophys Acta 11:1095–1104. doi:10.1016/j.bbadis.2010.07.013

    Google Scholar 

  • Zhang S, Bryant DA (2011) The tricarboxylic acid cycle in Cyanobacteria. Science 334(6062):1551–1553. doi:10.1126/science.1210858

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Russian Foundation of Basic Research (grants 10-04-90007, 11-04-91154 and 12-04-01541 to V.B.) and the Max Planck Society (WLA and ARF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria I. Bunik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araújo, W.L., Trofimova, L., Mkrtchyan, G. et al. On the role of the mitochondrial 2-oxoglutarate dehydrogenase complex in amino acid metabolism. Amino Acids 44, 683–700 (2013). https://doi.org/10.1007/s00726-012-1392-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-012-1392-x

Keywords

Navigation