Skip to main content
Log in

Mitochondrial transport in proline catabolism in plants: the existence of two separate translocators in mitochondria isolated from durum wheat seedlings

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Abiotic stresses, such as high salinity or drought, can cause proline accumulation in plants. Such an accumulation involves proline transport into mitochondria where proline catabolism occurs. By using durum wheat seedlings as a plant model system, we investigated how proline enters isolated coupled mitochondria. The occurrence of two separate translocators for proline, namely a carrier solely for proline and a proline/glutamate antiporter, is shown in a functional study in which we found the following: (1) Mitochondria undergo passive swelling in isotonic proline solutions in a stereospecific manner. (2) Externally added l-proline (Pro) generates a mitochondrial membrane potential (ΔΨ) with a rate depending on the transport of Pro across the mitochondrial inner membrane. (3) The dependence of the rate of generation of ΔΨ on increasing Pro concentrations exhibits hyperbolic kinetics. Proline transport is inhibited in a competitive manner by the non-penetrant thiol reagent mersalyl, but it is insensitive to the penetrant thiol reagent N-ethylmaleimide (NEM). (4) No accumulation of proline occurs inside the mitochondria as a result of the addition of proline externally, whereas the content of glutamate increases both in mitochondria and in the extramitochondrial phase. (5) Glutamate efflux from mitochondria occurs at a rate which depends on the mitochondrial transport, and it is inhibited in a non-competitive manner by NEM. The dependence of the rate of glutamate efflux on increasing proline concentration shows saturation kinetics. The physiological role of carrier-mediated transport in the regulation of proline catabolism, as well as the possible occurrence of a proline/glutamate shuttle in durum wheat seedlings mitochondria, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AA:

antimycin

AZC:

azetidine-2-carboxylate

d-Pro:

d-proline

DWM:

durum wheat seedling mitochondria

GDS:

glutamate detecting system

Glu:

l-glutamate

MERS:

mersalyl

NEM:

N-ethylmaleimide

NADH-DH:

NADH dehydrogenase

Pro:

l-proline

P5C:

pyrroline-5-carboxylate

P5CDH:

Δ1 pyrroline-5-carboxylate dehydrogenase

P5CR:

Δ1 pyrroline-5-carboxylate reductase

P5CS:

Δ1 pyrroline-5-carboxylate synthetase

ProDH:

proline dehydrogenase

References

  • Adams E, Frank L (1980) Metabolism of proline and the hydroxyproline. Annu Rev Biochem 49:1005–1061

    Article  PubMed  CAS  Google Scholar 

  • Atlante A, Passarella S, Pierro P, Di Martino C, Quagliariello E (1996) The mechanism of proline/glutamate antiport in rat kidney mitochondria. Energy dependence and glutamate-carrier involvement. Eur J Biochem 241:171–178

    Article  PubMed  CAS  Google Scholar 

  • Atlante A, Passarella S, Pierro P, Quagliariello E (1994) Proline transport in rat kidney mitochondria. Arch Biochem Biophys 309:139–148

    Article  PubMed  CAS  Google Scholar 

  • Armengaud P, Thiery L, Buhot N, Grenier-de March G, Savouré A (2004) Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiologia Plantarum 120:442–450

    Article  PubMed  CAS  Google Scholar 

  • Aubert S, Hennion F, Bouchereau A, Gout E, Bligny R, Dorne AJ (1999) Subcellular compartmentation of proline in the leaves of the subantarctic Kerguelen cabbage Pringlea antiscorbutica R. Br. In vivo 13C-NMR study. Plant Cell Environ 22:255–259

    Article  CAS  Google Scholar 

  • Ballantyne JS and Chamberlin ME (1993) Regulation of cellular amino acid levels. In: Strange K (ed) Cellular and molecular physiology of cell volume regulation, CRC Press Inc., Boca Raton, pp 111–122

  • Barile M, Brizio C, Valenti D, De Virgilio C, Passarella S (2000) The riboflavin/FAD cycle in rat liver mitochondria. Eur J Biochem 267(15):4888–4900

    Article  PubMed  CAS  Google Scholar 

  • Chappell JB, Haarhoff KN (1967) Biochemistry of mitochondria. In: Slater EC, Kaniuga Z, Wotczak L (eds) Academic, London, pp 75–92

    Google Scholar 

  • Demir Y (2000) Growth and proline content of germinating wheat genotypes under ultraviolet light. Turk J Bot 24:67–70

    Google Scholar 

  • Di Martino C, Delfine S, Pizzuto R, Loreto F, Fuggi A (2003) Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytologist 158:455–463

    Article  CAS  Google Scholar 

  • Elthon TE, Stewart CR (1982) Proline oxidation in corn mitochondria. Plant Physiol 70:567–572

    PubMed  CAS  Google Scholar 

  • Elthon TE, Stewart CR, Bonner WD (1984) Energetics of Proline transport in corn mitochondria. Plant Physiol 75:951–955

    PubMed  CAS  Google Scholar 

  • Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7:254–261

    Article  PubMed  CAS  Google Scholar 

  • Forlani G, Scainelli D, Nielsen E (1997) Two Δ1-pyrroline−5-carboxylate dehydrogenase isoforms are expressed in cultured Nicotiana plimbaginifolia cells and are differentially modulated during the culture growth cycle. Planta 202:242–248

    Article  CAS  Google Scholar 

  • Gimpel JA, de Haan EJ, Tager JM (1973) Permeability of isolated mitochondria to oxaloacetate. Biochim Biophys Acta 292(3):582–591

    Article  PubMed  CAS  Google Scholar 

  • Grallath S, Weimar T, Meyer A, Gumy C, Suter-Grotemeyer M, Neuhaus JM, Rentsch D (2005) The AtProT family. Compatible solute transporters with similar substrate specificity but differential expression patterns. Plant Physiol 137(1):117–126

    Article  PubMed  CAS  Google Scholar 

  • Hamilton EW, Heckathorn SA (2001) Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas Complex II is protected by proline and betaine. Plant Physiol 126:1266–1274

    Article  PubMed  CAS  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Halestrap AP, Scott RD, Thomas AP (1980) Mitochondrial pyruvate transport and its normal regulation. Int J Biochem 11:97–105

    Article  PubMed  CAS  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DP (2000) Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122 (4):1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Igarashi Y, Yoshiba Y, Takeshita T, Nomura S, Otomo J, Yamaguchi-Shinozaki K, Shinozaki K (2000) Molecular cloning and characterization of a cDNA encoding proline transporter in rice. Plant Cell Physiol 41:750–756

    Article  PubMed  CAS  Google Scholar 

  • Kishor KPB, Hong Z, Miao G, Hu CA, Verma DPS (1995) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    PubMed  CAS  Google Scholar 

  • Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K, Shinozaki K (1996) A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell 8(8):1323–1335

    Article  PubMed  CAS  Google Scholar 

  • Laloi M, (1999) Plant mitochondrial carriers: an overview. Cell Mol Life Sci 56(11–12):918–944

    Article  PubMed  CAS  Google Scholar 

  • Lee YH, Tegeder M (2004) Selective expression of a novel high-affinity transport system for acidic and neutral amino acids in the tapetum cells of Arabidopsis flowers. The Plant J 40(1):60–74

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  • Mestichelli LJ, Gupta RN, Spenser ID (1979) The biosynthetic route from ornithine to proline. J Biol Chem 254:640–647

    PubMed  CAS  Google Scholar 

  • Meyer J (1977) Proline transport in rat liver mitochondria. Arch Biochem Biophys 178:387–395

    Article  PubMed  CAS  Google Scholar 

  • Minocha R, Long S (2004) Simultaneous separation and quantitation of amino acids and and polyamines of forest tree tissues and cell cultures within a single high-performance liquid chromatography run using dansyl derivatization. J Chromatography 1035(1):63–73

    Article  CAS  Google Scholar 

  • Moore AL, Bonner WD Jr (1982) Measurements of membrane potentials in plant mitochondria with safranine method. Plant Physiol 70:1271–1276

    PubMed  CAS  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999a) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210

    Article  CAS  Google Scholar 

  • Nanjo T, KobayashiM, Yoshiba Y, Sanada Y,Wada K, Tsukaya H, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999b) Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J 18:185–193

    Article  CAS  Google Scholar 

  • Njagi EN, Olembo NK, Pearson DJ (1992) Proline transport by tsetse fly Glossina morsitans flight muscle mitochondria. Comp Biochem Physiol B 102(3):579–584

    Article  PubMed  CAS  Google Scholar 

  • Ozturk L, Demir Y (2002) In vivo and in vitro protective role of proline. Plant Growth Regul 38:259–264

    Article  CAS  Google Scholar 

  • Parvanova D, Ivanov S, Konstantinova T, Karanov E, Atanassov A, Tsvetkov T, Alexieva V, Djilianov D (2004) Transgenic tobacco plants accumulating osmolytes show reduce oxidative damage under freezing stress. Plant Physiol Biochem 42:57–63

    Article  PubMed  CAS  Google Scholar 

  • Passarella S, Atlante A, Valenti D, de Bari L (2003) The role of mitochondrial transport in energy metabolism. Mitochondrion 2:319–343

    Article  PubMed  CAS  Google Scholar 

  • Pastore D, Di Martino C, Bosco G, Passarella S (1996) Stimulation of ATP synthesis via oxidative phosphorylation in wheat mitochondria irradiated with helium-neon laser. Biochem Mol Biol Int 39:149–157

    PubMed  CAS  Google Scholar 

  • Pastore D, Stoppelli MC, Di Fonzo N, Passarella S (1999a) The existence of the K+ channel in plant mitochondria. J Biol Chem 274:26683– 26690

    Article  CAS  Google Scholar 

  • Pastore D, Trono D, Passarella S (1999b) Substrate oxidation and ADP/ATP exchange in coupled durum wheat (Triticum durum Desf.) mitochondria. Plant Biosyst 133:219–228

    Google Scholar 

  • Pastore D, Di Pede S, Passarella S (2003) Isolated durum wheat and potato cell mitochondria oxidize externally added NADH mostly via the malate/oxaloacetate shuttle with a rate thet depends on the carrier-mediated transport. Plant Physiol 133:2029–2039

    Article  PubMed  CAS  Google Scholar 

  • Rasmusson AG, Soole KL, Elthon TE (2004) Alternative NAD(P)H dehydrogenases in plant mitochondria. Annu Rev Plant Biol 55:23–39

    Article  PubMed  CAS  Google Scholar 

  • Schwacke R, Schneider A, van der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flugge UI, Kunze R (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131(1):16–26

    Article  PubMed  CAS  Google Scholar 

  • Serrano R (1996) Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int Rev Cytol 165:1–52

    Article  PubMed  CAS  Google Scholar 

  • Scarpulla RC, Soffer RL (1978) Membrane-bound proline dehydrogenase from Escherichia coli. Solubilization, purification, and characterization. J. Biol. Chem. 253:5997–6001

    PubMed  CAS  Google Scholar 

  • Sivakumar P, Sharmila P, Saradhi PP (1998) Proline suppresses Rubisco activity in higher plants. Biochem Biophys Res Commun 252:428–432

    Article  PubMed  CAS  Google Scholar 

  • Sivakumar P, Sharmila P, Saradhi PP (2001) Proline suppresses Rubisco activity by dissociating small subunits from holoenzyme. Biochem Biophys Res Commun 282:236–241

    Article  PubMed  CAS  Google Scholar 

  • Skubatz H, Meeuse BJD, Bendich AJ (1989) Oxidation of proline and glutamate by mitochondria of the inflorescence of Voodoo Lily (Sauromatum guttatum). Plant Physiol 91:530–535

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solute. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  • Trotel-Aziz P, Niogret MF, Larher FR (2000) Proline level is partly under the control of abscisic acid in canola leaf discs during recovery from hyper-osmotic stress. Physiol Plant 110:376–38

    Article  CAS  Google Scholar 

  • Trotel-Aziz P, Niogret MF, Deleu C, Bouchereau A, Aziz A, Larher FR (2003) The control of proline consumption by abscisic acid during osmotic stress recovery of canola leaf discs. Physiol Plant 117:213–221

    Article  CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38:1095–102

    PubMed  CAS  Google Scholar 

  • Yu C, Claybrook DL, Huang AH (1983) Transport of glycine, serine, and proline into spinach leaf mitochondria. Arch Biochem Biophys 227(1):180–187

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. G. Paventi for his continuous generous cooperation and Prof. D. Pastore for stimulating discussions at the early stage of this work. Critical reading by Prof. Shawn Doonan is gratefully acknowledged. This work was supported by the MIUR project, PRIN 2004—“Cross talk between organelles in response to oxidative stress and programmed cell death in plants”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Passarella.

Additional information

Catello Di Martino, Roberto Pizzuto these authors contributed equally to the paper

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Martino, C., Pizzuto, R., Pallotta, M.L. et al. Mitochondrial transport in proline catabolism in plants: the existence of two separate translocators in mitochondria isolated from durum wheat seedlings. Planta 223, 1123–1133 (2006). https://doi.org/10.1007/s00425-005-0166-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0166-z

Keywords

Navigation