Skip to main content

Advertisement

Log in

Morphology of P2X3-immunoreactive nerve endings in the rat laryngeal mucosa

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The morphological characteristics of P2X3-immunoreactive nerve endings in the laryngeal mucosa were herein examined using immunohistochemistry with confocal laser microscopy. Ramified intraepithelial nerve endings immunoreactive to P2X3 were distributed in the epiglottis and arytenoid region. The axon terminals of P2X3-immunoreactive ramified endings were beaded or flat in shape. These endings were also immunoreactive to P2X2 and not identical to the nerve endings immunoreactive to Na+-K+-ATPase α3-subunit, substance P (SP), and calcitonin gene-related peptide (CGRP). P2X3-immunoreactive axon terminals were also immunoreactive to vGLUT1, vGLUT2, and vGLUT3. In addition to ramified endings, P2X3-immunoreactive nerve endings were associated with α-gustducin-immunoreactive solitary chemosensory cells and/or SNAP25-immunoreactive neuroendocrine cells. Furthermore, P2X3-immunoreactive nerve endings were also observed in the taste bud-like chemosensory cell clusters of the stratified squamous epithelium covering epiglottic and arytenoid cartilage. The P2X3-immunoreactive nerve endings that associated with sensory and/or endocrine cells and chemosensory cell clusters were also immunoreactive to P2X2, vGLUT1, vGLUT2, and vGLUT3, but not to SP or CGRP. In conclusion, P2X3-immunoreactive nerve endings may be classified into two types, i.e., intraepithelial ramified nerve endings and nerve endings associated with chemosensory cells and neuroendocrine cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Azorin N, Raoux M, Rodat-Despoix L, Merrot T, Delmas P, Crest M (2011) ATP signalling is crucial for the response of human keratinocytes to mechanical stimulation by hypo-osmotic shock. Exp Dermatol 20:401–407. doi:10.1111/j.1600-0625.2010.01219.x

    Article  CAS  PubMed  Google Scholar 

  • Barr TP, Albrecht PJ, Hou Q, Mongin AA, Strichartz GR, Rice FL (2013) Air-stimulated ATP release from keratinocytes occurs through connexin hemichannels. PLoS ONE 8:e56744. doi:10.1371/journal.pone.0056744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bradley RM (2000) Sensory receptors of the larynx. Am J Med 108:47S–50S

    Article  PubMed  Google Scholar 

  • Brouns I, Adriaensen D, Burnstock G, Timmermans JP (2000) Intraepithelial vagal sensory nerve terminals in rat pulmonary neuroepithelial bodies express P2X3 receptors. Am J Respir Cell Mol Biol 23:52–61

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2000) P2X receptors in sensory neurones. Br J Anaesth 84:476–488

    Article  CAS  PubMed  Google Scholar 

  • Button B, Okada SF, Frederick CB, Thelin WR, Boucher RC (2013) Mechanosensitive ATP release maintains proper mucus hydration of airways. Sci Signal 11:ra46. doi:10.1126/scisignal.2003755

    Google Scholar 

  • Canning BJ, Mazzone SB, Meeker SN, Mori N, Reynolds SM, Undem BJ (2004) Identification of the tracheal and laryngeal afferent neurons mediating cough in anaesthetized guinea-pigs. J Physiol 557:543–558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chaumont S, Compan V, Toulme E, Richler E, Housley GD, Rassendren F, Khakh BS (2008) Regulation of P2X2 receptors by the neuronal calcium sensor VILIP1. Sci Signal 1:ra8. doi:10.1126/scisignal.1162329

    Article  PubMed Central  PubMed  Google Scholar 

  • Cho T, Chaban VV (2012) Interaction between P2X3 and oestrogen receptor (ER)α/ERβ in ATP-mediated calcium signalling in mice sensory neurone. J Endocrinol 24:789–797. doi:10.1111/j.1365-2826.2011.02272.x

    CAS  Google Scholar 

  • Dickman JD, Smith DV (1988) Response properties of fibers in the hamster superior laryngeal nerve. Brain Res 450:25–38

    Article  CAS  PubMed  Google Scholar 

  • Domeij S, Dahlqvist A, Forsgren S (1991) Regional differences in the distribution of nerve fibers showing substance P- and calcitonin gene-related peptide-like immunoreactivity in the rat larynx. Anat Embryol (Berl) 183:49–56

    Article  CAS  Google Scholar 

  • Dunn PM, Zhong Y, Burnstock G (2001) P2X receptors in peripheral neurons. Prog Neurobiol 65:107–134

    Article  CAS  PubMed  Google Scholar 

  • Ewald P, Neuhuber WL, Raab M (2006) Vesicular glutamate transporter 1 immunoreactivity in extrinsic and intrinsic innervation of the rat esophagus. Histochem Cell Biol 125:377–395

    Article  CAS  PubMed  Google Scholar 

  • Finger TE, Danilova V, Barrows J, Bartel DL, Vigers AJ, Stone L, Hellekant G, Kinnamon SC (2005) ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310:1495–1499

    Article  CAS  PubMed  Google Scholar 

  • Fuziwara S, Inoue K, Denda M (2003) NMDA-type glutamate receptor is associated with cutaneous barrier homeostasis. J Invest Dermatol 120:1023–1029

    Article  CAS  PubMed  Google Scholar 

  • Genever PG, Maxfield SJ, Kennovin GD, Maltman J, Bowgen CJ, Raxworthy MJ, Skerry TM (1999) Evidence for a novel glutamate-mediated signaling pathway in keratinocytes. J Invest Dermatol 112:337–342

    Article  CAS  PubMed  Google Scholar 

  • Hemmings-Mieszczak M, Dorn G, Natt FJ, Hall J, Wishart WL (2003) Independent combinatorial effect of antisense oligonucleotides and RNAi-mediated specific inhibition of the recombinant rat P2X3 receptor. Nucleic Acids Res 31:2117–2126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Honer WG, Beach TG, Hu L, Berry K, Dorovini-Zis K, Moore GR, Woodhurst B (1994) Hippocampal synaptic pathology in patients with temporal lobe epilepsy. Acta Neuropathol 87:202–210

    Article  CAS  PubMed  Google Scholar 

  • Huang L-C, Greenwood D, Thorne PR, Housley GD (2005) Developmental regulation of neuron specific P2X3 receptor expression in the rat cochlea. J Comp Neurol 484:133–143

    Article  CAS  PubMed  Google Scholar 

  • Huang YJ, Maruyama Y, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD (2007) The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proc Natl Acad Sci USA 104:6436–6441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang YA, Grant J, Roper S (2012) Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds. PLoS ONE 7:e30662. doi:10.1371/journal.pone.0030662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hubscher CH, Petruska JC, Rau KK, Johnson RD (2001) Co-expression of P2X receptor subunits on rat nodose neurons that bind the isolectin GS-I-B4. NeuroReport 12:2995–2997

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa H, Sugimoto T (2004) The co-expression of P2X3 receptor with VR1 and VRL-1 in the rat trigeminal ganglion. Brain Res 998:130–135

    Article  CAS  PubMed  Google Scholar 

  • Ishida Y, Ugawa S, Ueda T, Yamada T, Shibata Y, Hondoh A, Inoue K, Yu Y, Shimada S (2009) P2X2- and P2X3-positive fibers in fungiform papillae originate from the chorda tympani but not the trigeminal nerve in rats and mice. J Comp Neurol 514:131–144. doi:10.1002/cne.22000

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru H, Casamenti F, Uéda K, Maruyama Y, Pepeu G (2001) Changes in presynaptic proteins, SNAP-25 and synaptophysin, in the hippocampal CA1 area in ischemic gerbils. Brain Res 903:94–101

    Article  CAS  PubMed  Google Scholar 

  • Kasai H, Takahashi N, Tokumaru H (2012) Distinct initial SNARE configurations underlying the diversity of exocytosis. Physiol Rev 92:1915–1964. doi:10.1152/physrev.00007

    Article  CAS  PubMed  Google Scholar 

  • Kataoka S, Toyono T, Seta Y, Toyoshima K (2006) Expression of ATP-gated P2X3 receptors in rat gustatory papillae and taste buds. Arch Histol Cytol 69:281–288

    Article  CAS  PubMed  Google Scholar 

  • Kinnamon SC, Finger TE (2013) A taste for ATP: neurotransmission in taste buds. Front Cell Neurosci 7:264. doi:10.3389/fncel.2013.00264

    Article  PubMed Central  PubMed  Google Scholar 

  • Krasteva G, Kummer W (2012) “Tasting” the airway lining fluid. Histochem Cell Biol 138:365–383. doi:10.1007/s00418-012-0993-5

    Article  CAS  PubMed  Google Scholar 

  • Krasteva G, Canning BJ, Hartmann P, Veres TZ, Papadakis T, Mühlfeld C, Schliecker K, Tallini YN, Braun A, Hackstein H, Baal N, Weihe E, Schütz B, Kotlikoff M, Ibanez-Tallon I, Kummer W (2011) Cholinergic chemosensory cells in the trachea regulate breathing. Proc Natl Acad Sci USA 108:9478–9483. doi:10.1073/pnas.1019418108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krasteva G, Canning BJ, Papadakis T, Kummer W (2012) Cholinergic brush cells in the trachea mediate respiratory responses to quorum sensing molecules. Life Sci 91:992–996. doi:10.1016/j.lfs.2012.06.014

    Article  CAS  PubMed  Google Scholar 

  • McDowell EM, Sorokin SP, Hoyt RF Jr (1994) Ontogeny of endocrine cells in the respiratory system of Syrian golden hamsters. I. Larynx and trachea. Cell Tissue Res 275:143–156

    Article  CAS  PubMed  Google Scholar 

  • Nahm WK, Philpot BD, Adams MM, Badiavas EV, Zhou LH, Butmarc J, Bear MF, Falanga V (2004) Significance of N-methyl-D-aspartate (NMDA) receptor-mediated signaling in human keratinocytes. J Cell Physiol 200:309–317

    Article  CAS  PubMed  Google Scholar 

  • Nakatsuka T, Gu JG (2006) P2X purinoceptors and sensory transmission. Pflugers Arch 452:598–607

    Article  CAS  PubMed  Google Scholar 

  • Nishijima K, Atoji Y (2004) Taste buds and nerve fibers in the rat larynx: an ultrastructural and immunohistochemical study. Arch Histol Cytol 67:195–209

    Article  PubMed  Google Scholar 

  • Ohkuri T, Horio N, Stratford JM, Finger TE, Ninomiya Y (2012) Residual chemoresponsiveness to acids in the superior laryngeal nerve in “taste-blind” (P2X2/P2X3 double-KO) mice. Chem Senses 37:523–532. doi:10.1093/chemse/bjs004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okada SF, Nicholas RA, Kreda SM, Lazarowski ER, Boucher RC (2006) Physiological regulation of ATP release at the apical surface of human airway epithelia. J Biol Chem 281:22992–23002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pan J, Yeger H, Cuts E (2004) Innervation of pulmonary neuroendocrine cells and neuroepithelial bodies in developing rabbit lung. J Histochem Cytochem 52:349–389

    Article  Google Scholar 

  • Petruska JC, Cooper BY, Gu JG, Rau KK, Johnson RD (2000) Distribution of P2X1, P2X2 and P2X3 receptor subunits in rat primary afferents: relation to population markers and specific cell types. J Chem Neuroanat 20:141–162

    Article  CAS  PubMed  Google Scholar 

  • Piskuric NA, Vollmer C, Nurse CA (2011) Confocal immunofluorescence study of rat aortic body chemoreceptors and associated neurons in situ and in vitro. J Comp Neurol 519:856–873. doi:10.1002/cne.22553

    Article  PubMed  Google Scholar 

  • Prasad M, Fearon IM, Zhang M, Laing M, Vollmer C, Nurse CA (2001) Expression of P2X2 and P2X3 receptor subunits in rat carotid body afferent neurones: role in chemosensory signalling. J Physiol 537:667–677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raab M, Neuhuber WL (2004) Intraganglionic laminar endings and their relationships with neuronal and glial structures of myenteric ganglia in the esophagus of rat and mouse. Histochem Cell Biol 122:445–459

    Article  CAS  PubMed  Google Scholar 

  • Ransford GA, Fregien N, Qiu F, Dahl G, Conner GE, Salathe M (2009) Pannexin 1 contributes to ATP release in airway epithelia. Am J Respir Cell Mol Biol 41:525–534. doi:10.1165/rcmb.2008-0367OC

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reed GL, Houng AK, Fitzgerald ML (1999) Human platelets contain SNARE proteins and a Sec1p homologue that interacts with syntaxin 4 and is phosphorylated after thrombin activation: implications for platelet secretion. Blood 93:2617–2626

    CAS  PubMed  Google Scholar 

  • Sant’Ambrogio G, Widdicombe J (2001) Reflexes from airway rapidly adapting receptors. Respir Physiol 125:33–45

    Article  PubMed  Google Scholar 

  • Sbarbati A, Osculati F (2005) The taste cell-related diffuse chemosensory system. Prog Neurobiol 75:295–307

    Article  CAS  PubMed  Google Scholar 

  • Sbarbati A, Merigo F, Benati D, Tizzano M, Bernardi P, Crescimanno C, Osculati F (2004a) Identification and characterization of a specific sensory epithelium in the rat larynx. J Comp Neurol 475:188–201

    Article  PubMed  Google Scholar 

  • Sbarbati A, Merigo F, Benati D, Tizzano M, Bernardi P, Osculati F (2004b) Laryngeal chemosensory clusters. Chem Senses 29:683–692

    Article  CAS  PubMed  Google Scholar 

  • Shingai T (1980) Water fibers in the superior laryngeal nerve of the rat. Jpn J Physiol 30:305–307

    Article  CAS  PubMed  Google Scholar 

  • Smith DV, Hanamori T (1991) Organization of gustatory sensitivities in hamster superior laryngeal nerve fibers. J Neurophysiol 65:1098–1114

    CAS  PubMed  Google Scholar 

  • Smith CP, Vemulakonda VM, Kiss S, Boone TB, Somogyi GT (2005) Enhanced ATP release from rat bladder urothelium during chronic bladder inflammation: effect of botulinum toxin A. Neurochem Int 47:291–297

    Article  CAS  PubMed  Google Scholar 

  • Soda S, Yamamoto Y (2012) Morphology and chemical characteristics of subepithelial laminar nerve endings in the rat epiglottic mucosa. Histochem Cell Biol 138:25–39. doi:10.1007/s00418-012-0939-y

    Article  CAS  PubMed  Google Scholar 

  • Staikopoulos V, Sessle BJ, Furness JB, Jennings EA (2007) Localization of P2X2 and P2X3 receptors in rat trigeminal ganglion neurons. Neuroscience 144:208–216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor AMW, Peleshok JC, Ribeiro-da-Silva A (2009) Distribution of P2X3-immunoreactive fibers in hairy and glabrous skin of the rat. J Comp Neurol 514:555–566. doi:10.1002/cne.22048

    Article  CAS  PubMed  Google Scholar 

  • Thomas S, Virginio C, North RA, Surprenant A (1998) The antagonist trinitrophenyl-ATP reveals co-existence of distinct P2X receptor channels in rat nodose neurons. J Physiol 509:411–417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tizzano M, Gulbransen BD, Vandenbeuch A, Clapp TR, Herman JP, Sibhatu HM, Churchill ME, Silver WL, Kinnamon SC, Finger TE (2010) Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci USA 107:3210–3215. doi:10.1073/pnas.0911934107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tizzano M, Cristofoletti M, Sbarbati A, Finger TE (2011) Expression of taste receptors in solitary chemosensory cells of rodent airways. BMC Pulm Med 11:3. doi:10.1186/1471-2466-11-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Torres GE, Egan TM, Voigt MM (1999) Hetero-oligomeric assembly of P2X receptor subunits. Specificities exist with regard to possible partners. J Biol Chem 274:6653–6659

    Article  CAS  PubMed  Google Scholar 

  • Virginio C, North RA, Surprenant A (1998) Calcium permeability and block at homomeric and heteromeric P2X2 and P2X3 receptors, and P2X receptors in rat nodose neurons. J Physiol 510:27–35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vulchanova L, Riedl MS, Shuster SJ, Buell G, Surprenant A, North RA, Elde R (1997) Immunohistochemical study of the P2X2 and P2X3 receptor subunits in rat and monkey sensory neurons and their central terminals. Neuropharmacology 36:1229–1242

    Article  CAS  PubMed  Google Scholar 

  • Wang ZJ, Neuhuber WL (2003) Intraganglionic laminar endings in the rat esophagus contain purinergic P2X2 and P2X3 receptor immunoreactivity. Anat Embryol (Berl) 207:363–371

    Article  CAS  Google Scholar 

  • Weigand LA, Ford AP, Undem BJ (2012) A role for ATP in bronchoconstriction-induced activation of guinea pig vagal intrapulmonary C-fibers. J Physiol 590:4109–4120. doi:10.1113/jphysiol.2012.233460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Widdicombe JG, Sant’Ambrogio G, Mathew OP (1988) Nerve receptors of the upper airway. In: Mathew OP, Sant’Ambrogio G (eds) Respiratory functions of the upper airway. Marcel Dekker, New York and Basel, pp 193–231

    Google Scholar 

  • Xiang Z, Burnstock G (2004) P2X2 and P2X3 purinoceptors in the rat enteric nervous system. Histochem Cell Biol 121:169–179

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z, Bo X, Burnstock G (1998) Localization of ATP-gated P2X receptor immunoreactivity in rat sensory and sympathetic ganglia. Neurosci Lett 256:105–108

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Kusakabe T, Hayashida Y, Yoshida T, Matsuda H, Atoji Y, Suzuki Y (2000) Laryngeal endocrine cells: topographic distribution and adaptation to chronic hypercapnic hypoxia. Histochem Cell Biol 114:277–282

    CAS  PubMed  Google Scholar 

  • Yang R, Crowley HH, Rock ME, Kinnamon JC (2000) Taste cells with synapses in rat circumvallate papillae display SNAP-25-like immunoreactivity. J Comp Neurol 424:205–215

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Ma H, Thomas SM, Kinnamon JC (2007) Immunocytochemical analysis of syntaxin-1 in rat circumvallate taste buds. J Comp Neurol 502:883–893

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Montoya A, Bond A, Walton J, Kinnamon JC (2012) Immunocytochemical analysis of P2X2 in rat circumvallate taste buds. BMC Neurosci 13:51. doi:10.1186/1471-2202-13-51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Young JS, Matharu R, Carew MA, Fry CH (2012) Inhibition of stretching-evoked ATP release from bladder mucosa by anticholinergic agents. BJU Int 110:E397–E401. doi:10.1111/j.1464-410X.2012.10966.x

    Article  CAS  PubMed  Google Scholar 

  • Yu YC, Miyazaki J, Shin T (1996) Neuroendocrine cells in the cat laryngeal epithelium. Eur Arch Otorhinolaryngol 253:87–93

    Article  Google Scholar 

Download references

Acknowledgments

This study was partly supported by Grants-in-Aid from the Japan Society for the Promotion of Science to YY (JSPS KAKENHI 15K07759).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, N., Nakamuta, N. & Yamamoto, Y. Morphology of P2X3-immunoreactive nerve endings in the rat laryngeal mucosa. Histochem Cell Biol 145, 131–146 (2016). https://doi.org/10.1007/s00418-015-1371-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-015-1371-x

Keywords

Navigation