Skip to main content
Log in

Intraganglionic laminar endings and their relationships with neuronal and glial structures of myenteric ganglia in the esophagus of rat and mouse

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Intraganglionic laminar endings (IGLEs) represent the only vagal mechanosensory terminals in the tunica muscularis of the esophagus and may be involved in local reflex control. We recently detected extensive though not complete colocalization of the vesicular glutamate transporter 2 (VGLUT2) with markers for IGLEs. To elucidate this colocalization mismatch, this study aimed at identifying markers for nitrergic, cholinergic, peptidergic, and adrenergic neurons and glial cells, which may colocalize with VGLUT2 outside of IGLEs. Confocal imaging revealed, besides substantial colocalization of VGLUT2 and substance P (SP), no other significant colocalizations of VGLUT2 and immunoreactivity for any of these markers within the same varicosities. However, we found close contacts of VGLUT2-positive structures to vesicular acetylcholine transporter, choline acetyltransferase, neuronal nitric oxide synthase, galanin, neuropeptide Y, and vasoactive intestinal peptide immunoreactive cell bodies and varicosities, as well as to glial cells. Neuronal perikarya were never positive for VGLUT2. Thus, VGLUT2 was almost exclusively found in IGLEs and may serve as a specific marker for them. In addition, many IGLEs also contained SP. The close contacts established by IGLEs to myenteric cell bodies, dendrites, and varicose fibers suggest that IGLEs modulate various types of enteric neurons and vice versa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–Q
Fig. 2A–C Fig. 3A–F Fig. 4A–C Fig. 5A–C Fig. 6A–C
Fig. 7A–C Fig. 8A–C Fig. 9A–C Fig. 10A–C Fig. 11A–C Fig. 12A–C

Similar content being viewed by others

References

  • Aimi Y, Kimura H, Kinoshita T, Minami Y, Fujimura M, Vincent SR (1993) Histochemical localization of nitric oxide synthase in rat enteric nervous system. Neuroscience 53:553–560

    Article  CAS  PubMed  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1998) Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J Neurosci 10:2129–2142

    Article  CAS  PubMed  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    Article  CAS  PubMed  Google Scholar 

  • Berthoud HR, Powley TL (1992) Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor. J Comp Neurol 319:261–276

    CAS  PubMed  Google Scholar 

  • Berthoud HR, Patterson LM, Neumann F, Neuhuber WL (1997) Distribution and structure of vagal afferent intraganglionic laminar endings (IGLEs) in the rat gastrointestinal tract. Anat Embryol (Berl) 195:183–191

    Google Scholar 

  • Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391:281–285

    Article  CAS  PubMed  Google Scholar 

  • Bezzi P, Gundersen V, Galbete JL, Seifert G, Steinhauser C, Pilati E, Volterra A (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620

    Article  CAS  PubMed  Google Scholar 

  • Blandizzi C, Doda M, Tarkovacs G, Del Tacca M, Vizi ES (1991) Functional evidence that acetylcholine release from Auerbach’s plexus of guinea-pig ileum is modulated by alpha 2A-adrenoceptor subtype. Eur J Pharmacol 205:311–313

    Article  CAS  PubMed  Google Scholar 

  • Boeckxstaens GE, Pelckmans PA, Ruytjens IF, Bult H, De Man JG, Herman AG, Van Maercke YM (1991) Bioassay of nitric oxide released upon stimulation of non-adrenergic non-cholinergic nerves in the canine ileocolonic junction. Br J Pharmacol 103:1085–1091

    CAS  PubMed  Google Scholar 

  • Castelucci P, Robbins HL, Furness JB (2003) P2X(2) purine receptor immunoreactivity of intraganglionic laminar endings in the mouse gastrointestinal tract. Cell Tissue Res 312:167–174

    PubMed  Google Scholar 

  • Cosentino M, De Ponti F, Marino F, Giaroni C, Leoni O, Lecchini S, Frigo G (1995) N-methyl-d-aspartate receptors modulate neurotransmitter release and peristalsis in the guinea pig isolated colon. Neurosci Lett 183:139–142

    Article  CAS  PubMed  Google Scholar 

  • Costa M, Furness JB, Pompolo S, Brookes SJ, Bornstein JC, Bredt DS, Snyder SH (1992) Projections and chemical coding of neurons with immunoreactivity for nitric oxide synthase in the guinea-pig small intestine. Neurosci Lett 148:121–125

    Article  CAS  PubMed  Google Scholar 

  • Delbro D (1985) The role of substance P in the control of gut motility. In: Hakanson R, Sundler F (eds) Tachykinin antagonists. Elsevier, Amsterdam, pp 223–230

  • Dütsch M, Eichhorn U, Wörl J, Wank M, Berthoud HR, Neuhuber WL (1998) Vagal and spinal afferent innervation of the rat esophagus: a combined retrograde tracing and immunocytochemical study with special emphasis on calcium-binding proteins. J Comp Neurol 398:289–307

    Article  CAS  PubMed  Google Scholar 

  • Furness JB, Costa M (1974) The adrenergic innervation of the gastrointestinal tract. Ergeb Physiol 69:2–51

    CAS  PubMed  Google Scholar 

  • Furness JB, Costa M (1987) The enteric nervous system. Churchill Livingstone, Edinburgh

  • Giaroni C, De Ponti F, Cosentino M, Lecchini S, Frigo G (1999a) Plasticity in the enteric nervous system. Gastroenterology 117:1438–1458

    CAS  PubMed  Google Scholar 

  • Giaroni C, Somaini L, Marino F, Cosentino M, Senaldi A, De Ponti F, Lecchini S, Frigo G (1999b) Modulation of enteric cholinergic neurons by hetero- and autoreceptors: cooperation among inhibitory inputs. Life Sci 65:813–821

    Article  CAS  PubMed  Google Scholar 

  • Giaroni C, Zanetti E, Chiaravalli AM, Albarello L, Dominioni L, Capella C, Lecchini S, Frigo G (2003) Evidence for a glutamatergic modulation of the cholinergic function in the human enteric nervous system via NMDA receptors. Eur J Pharmacol 476:63–69

    Article  CAS  PubMed  Google Scholar 

  • Grozdanovic Z, Gossrau R (1998) Co-localization of nitric oxide synthase I (NOS I) and NMDA receptor subunit 1 (NMDAR-1) at the neuromuscular junction in rat and mouse skeletal muscle. Cell Tissue Res 291:57–63

    Article  CAS  PubMed  Google Scholar 

  • Grundy D, Gharib-Naseri MK, Hutson D (1993) Role of nitric oxide and vasoactive intestinal polypeptide in vagally mediated relaxation of the gastric corpus in the anaesthetized ferret. J Auton Nerv Syst 43:241–246

    Article  CAS  PubMed  Google Scholar 

  • Holzer P (1988) Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 24:739–768

    Article  CAS  PubMed  Google Scholar 

  • Izumi N, Matsuyama H, Ko M, Shimizu Y, Takewaki T (2003) Role of intrinsic nitrergic neurones on vagally mediated striated muscle contractions in the hamster oesophagus. J Physiol 551:287–294

    CAS  PubMed  Google Scholar 

  • Jessen KR, Mirsky R (1983) Astrocyte-like glia in the peripheral nervous system: an immunohistochemical study of enteric glia. J Neurosci 3:2206–2218

    CAS  PubMed  Google Scholar 

  • Kaneko T, Fujiyama F, Hioki H (2002) Immunohistochemical localization of candidates for vesicular glutamate transporters in the rat brain. J Comp Neurol 444:39–62

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1:683–692

    Article  CAS  PubMed  Google Scholar 

  • Kato H, Yamamoto T, Yamamoto H, Ohi R, So N, Iwasaki Y (1990) Immunocytochemical characterization of supporting cells in the enteric nervous system in Hirschsprung’s disease. J Pediatr Surg 25:514–519

    Article  CAS  PubMed  Google Scholar 

  • Kerr KP (2000) Effects of tachykinin receptor agonists and antagonists on the guinea-pig isolated oesophagus. Clin Exp Pharmacol Physiol 27:934–938

    Article  CAS  PubMed  Google Scholar 

  • Kerr KP, Mitchelson F, Coupar IM (1995) Vagal nerve stimulation of the guinea-pig oesophagus. Acta Physiol Scand 154:213–220

    CAS  PubMed  Google Scholar 

  • King SC, Slater P, Turnberg LA (1989) Autoradiographic localization of binding sites for galanin and VIP in small intestine. Peptides 10:313–317

    Article  CAS  PubMed  Google Scholar 

  • Kirchgessner AL (2001) Glutamate in the enteric nervous system. Curr Opin Pharmacol 1:591–596

    Article  CAS  PubMed  Google Scholar 

  • Kirchgessner AL, Liu MT, Gershon MD (1994) NADPH diaphorase (nitric oxide synthase)-containing nerves in the enteropancreatic innervation: sources, co-stored neuropeptides, and pancreatic function. J Comp Neurol 342:115–130

    CAS  PubMed  Google Scholar 

  • Kirchgessner AL, Liu MT, Alcantara F (1997) Excitotoxicity in the enteric nervous system. J Neurosci 17:8804–8816

    CAS  PubMed  Google Scholar 

  • Kraus T, Neuhuber WL, Raab M (2004) Vesicular glutamate transporter 1 immunoreactivity in motor endplates of striated esophageal but not skeletal muscles in the mouse. Neurosci Lett 360:53–56

    Article  CAS  PubMed  Google Scholar 

  • Kressel M, Radespiel-Tröger M (1999) Anterograde tracing and immunohistochemical characterization of potentially mechanosensitive vagal afferents in the esophagus. J Comp Neurol 412:161–172

    Article  CAS  PubMed  Google Scholar 

  • Kuramoto H, Brookes SJ (2000) Cholinergic and nitrergic innervation of the rat esophagus. In: Krammer HJ, Singer MV (eds) Neurogastroenterology from the basics to the clinics. Kluwer, Dordrecht, pp 78–82

  • Lawrence AJ, Watkins D, Jarrott B (1995) Visualization of beta-adrenoceptor binding sites on human inferior vagal ganglia and their axonal transport along the rat vagus nerve. J Hypertens 13:631–635

    CAS  PubMed  Google Scholar 

  • Li ZS, Furness JB (1998) Immunohistochemical localisation of cholinergic markers in putative intrinsic primary afferent neurons of the guinea-pig small intestine. Cell Tissue Res 294:35–43

    Article  CAS  PubMed  Google Scholar 

  • Liou HC, Yang RS, Fu WM (1996) Potentiation of spontaneous acetylcholine release from motor nerve terminals by glutamate in Xenopus tadpoles. Neuroscience 75:325–331

    Article  CAS  PubMed  Google Scholar 

  • Liu MT, Rothstein JD, Gershon MD, Kirchgessner AL (1997) Glutamatergic enteric neurons. J Neurosci 17:4764–4784

    CAS  PubMed  Google Scholar 

  • Maggi CA (1995) Tachykinins and calcitonin gene-related peptide (CGRP) as co-transmitters released from peripheral endings of sensory nerves. Prog Neurobiol 45:1–98

    Article  CAS  PubMed  Google Scholar 

  • Maggi CA (2000) Principles of tachykininergic co-transmission in the peripheral and enteric nervous system. Regul Pept 93:53–64

    Article  CAS  PubMed  Google Scholar 

  • Malomuzh AI, Mukhtarov MR, Urazaev A, Nikolsky EE, Vyskocil F (2002) The effects of glutamate on spontaneous acetylcholine secretion processes in the rat neuromuscular synapse. Neurosci Behav Physiol 32:577–582

    Article  CAS  PubMed  Google Scholar 

  • Mann PT, Southwell BR, Young HM, Furness JB (1997) Appositions made by axons of descending interneurons in the guinea-pig small intestine, investigated by confocal microscopy. J Chem Neuroanat 12:151–164

    Article  CAS  PubMed  Google Scholar 

  • Matsuda H, Brumovsky PR, Kopp J, Pedrazzini T, Hokfelt T (2002) Distribution of neuropeptide Y Y1 receptors in rodent peripheral tissues. J Comp Neurol 449:390–404

    Article  CAS  PubMed  Google Scholar 

  • Mayer B, John M, Heinzel B, Werner ER, Wachter H, Schultz G, Bohme E (1991) Brain nitric oxide synthase is a biopterin- and flavin-containing multi-functional oxido-reductase. FEBS Lett 288:187–191

    Article  CAS  PubMed  Google Scholar 

  • Mazarati A, Langel U, Bartfai T (2001) Galanin: an endogenous anticonvulsant? Neuroscientist 7:506–517

    CAS  PubMed  Google Scholar 

  • McRoberts JA, Coutinho SV, Marvizon JC, Grady EF, Tognetto M, Sengupta JN, Ennes HS, Chaban VV, Amadesi S, Creminon C, Lanthorn T, Geppetti P, Bunnett NW, Mayer EA (2001) Role of peripheral N-methyl-d-aspartate (NMDA) receptors in visceral nociception in rats. Gastroenterology 120:1737–1748

    CAS  PubMed  Google Scholar 

  • Montana V, Ni Y, Sunjara V, Hua X, Parpura V (2004) Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 24:2633–2642

    Article  CAS  PubMed  Google Scholar 

  • Mukhtarov MR, Urazaev AK, Nikolsky EE, Vyskocil F (2000) Effect of nitric oxide and NO synthase inhibition on nonquantal acetylcholine release in the rat diaphragm. Eur J Neurosci 12:980–986

    Article  CAS  PubMed  Google Scholar 

  • Neuhuber WL (1987) Sensory vagal innervation of the rat esophagus and cardia: a light and electron microscopic anterograde tracing study. J Auton Nerv Syst 20:243–255

    Article  CAS  PubMed  Google Scholar 

  • Neuhuber WL, Clerc N (1990) Afferent innervation of the esophagus in cat and rat. In: Zenker W, Neuhuber WL (ed) The primary afferent neuron. Plenum, New York, pp 93–107

  • Neuhuber WL, Wörl J, Berthoud HR, Conte B (1994) NADPH-diaphorase-positive nerve fibers associated with motor endplates in the rat esophagus: new evidence for co-innervation of striated muscle by enteric neurons. Cell Tissue Res 276:23–30

    CAS  PubMed  Google Scholar 

  • Neuhuber WL, Kressel M, Stark A, Berthoud HR (1998) Vagal efferent and afferent innervation of the rat esophagus as demonstrated by anterograde DiI and DiA tracing: focus on myenteric ganglia. J Auton Nerv Syst 70:92–102

    Article  CAS  PubMed  Google Scholar 

  • Nonidez JF (1946) Afferent nerves in the intermuscular plexus of the dog’s oesophagus. J Comp Neurol 85:177–189

    Google Scholar 

  • Phillips RJ, Powley TL (2000) Tension and stretch receptors in gastrointestinal smooth muscle: re-evaluating vagal mechanoreceptor electrophysiology. Brain Res Brain Res Rev 34:1–26

    Article  CAS  PubMed  Google Scholar 

  • Portbury AL, Furness JB, Young HM, Southwell BR, Vigna SR (1996) Localisation of NK1 receptor immunoreactivity to neurons and interstitial cells of the guinea-pig gastrointestinal tract. J Comp Neurol 367:342–351

    Article  CAS  PubMed  Google Scholar 

  • Pralong E, Magistretti PJ (1995) Noradrenaline increases K-conductance and reduces glutamatergic transmission in the mouse entorhinal cortex by activation of alpha 2-adrenoreceptors. Eur J Neurosci 7:2370–2378

    CAS  PubMed  Google Scholar 

  • Raab M, Neuhuber WL (2003) Vesicular glutamate transporter 2 immunoreactivity in putative vagal mechanosensor terminals of mouse and rat esophagus: indication of a local effector function? Cell Tissue Res 312:141–148

    CAS  PubMed  Google Scholar 

  • Raab M, Neuhuber WL (2004) Glutamatergic intraganglionic laminar endings (IGLEs) and their relationships with the neuropil of myenteric ganglia in the esophagus of rat and mouse. Ann Anat 186:49

    Google Scholar 

  • Rhoads JM, Argenzio RA, Chen W, Gomez GG (1995) Asparagine stimulates piglet intestinal Cl secretion by a mechanism requiring a submucosal glutamate receptor and nitric oxide. J Pharmacol Exp Ther 274:404–412

    CAS  PubMed  Google Scholar 

  • Rodrigo J, Hernandez J, Vidal MA, Pedrosa JA (1975) Vegetative innervation of the esophagus. II. Intraganglionic laminar endings. Acta Anat 92:79–100

    CAS  PubMed  Google Scholar 

  • Rodrigo J, de Felipe J, Robles-Chillida EM, Perez Anton JA, Mayo I, Gomez A (1982) Sensory vagal nature and anatomical access paths to esophagus laminar nerve endings in myenteric ganglia. Determination by surgical degeneration methods. Acta Anat (Basel) 112:47–57

    Google Scholar 

  • Sang Q, Young HM (1997) Development of nicotinic receptor clusters and innervation accompanying the change in muscle phenotype in the mouse esophagus. J Comp Neurol 386:119–136

    Article  CAS  PubMed  Google Scholar 

  • Scheibner J, Trendelenburg AU, Hein L, Starke K, Blandizzi C (2002) Alpha 2-adrenoceptors in the enteric nervous system: a study in alpha 2A-adrenoceptor-deficient mice. Br J Pharmacol 135:697–704

    CAS  PubMed  Google Scholar 

  • Sinsky M, Donnerer J (1998) Evidence for a neurotransmitter role of glutamate in guinea pig myenteric plexus neurons. Neurosci Lett 258:109–112

    Article  CAS  PubMed  Google Scholar 

  • Sternini C, Su D, Gamp PD, Bunnett NW (1995) Cellular sites of expression of the neurokinin-1 receptor in the rat gastrointestinal tract. J Comp Neurol 358:531–540

    CAS  PubMed  Google Scholar 

  • Tamura K, Palmer JM, Winkelmann CK, Wood JD (1988) Mechanism of action of galanin on myenteric neurons. J Neurophysiol 60:966–979

    CAS  PubMed  Google Scholar 

  • Teitelbaum JS, Zatorre RJ, Carpenter S, Gendron D, Evans AC, Gjedde A, Cashman NR (1990) Neurologic sequelae of domoic acid intoxication due to the ingestion of contaminated mussels. N Engl J Med 322:1781-1787

    CAS  PubMed  Google Scholar 

  • Todd AJ, Hughes DI, Polgar E, Nagy GG, Mackie M, Ottersen OP, Maxwell DJ (2003) The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn. Eur J Neurosci 17:13–27

    Article  CAS  PubMed  Google Scholar 

  • Tong Q, Kirchgessner AL (2003) Localization and function of metabotropic glutamate receptor 8 in the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 285:G992–G1003

    CAS  PubMed  Google Scholar 

  • Ulus IH, Buyukuysal RL, Wurtman RJ (1992) N-methyl-d-aspartate increases acetylcholine release from rat striatum and cortex: its effect is augmented by choline. J Pharmacol Exp Ther 261:1122–1128

    CAS  PubMed  Google Scholar 

  • Wang ZJ, Neuhuber WL (2003) Intraganglionic laminar endings in the rat esophagus contain purinergic P2X2 and P2X3 receptor immunoreactivity. Anat Embryol (Berl) 207:363–371

    Google Scholar 

  • Wang FB, Powley TL (2000) Topographic inventories of vagal afferents in gastrointestinal muscle. J Comp Neurol 421:302–324

    Article  CAS  PubMed  Google Scholar 

  • Wiley JW, Lu YX, Owyang C (1991) Evidence for a glutamatergic neural pathway in the myenteric plexus. Am J Physiol 261:G693–G700

    CAS  PubMed  Google Scholar 

  • Wörl J, Fischer J, Neuhuber WL (1998) Nonvagal origin of galanin-containing nerve terminals innervating striated muscle fibers of the rat esophagus. Cell Tissue Res 292:453–461

    Article  PubMed  Google Scholar 

  • Zagorodnyuk VP, Brookes SJ (2000) Transduction sites of vagal mechanoreceptors in the guinea pig esophagus. J Neurosci 20:6249–6255

    CAS  PubMed  Google Scholar 

  • Zagorodnyuk VP, Chen BN, Brookes SJ (2001) Intraganglionic laminar endings are mechano-transduction sites of vagal tension receptors in the guinea-pig stomach. J Physiol 534:255–268

    CAS  PubMed  Google Scholar 

  • Zagorodnyuk VP, Chen BN, Costa M, Brookes SJ (2003) Mechanotransduction by intraganglionic laminar endings of vagal tension receptors in the guinea-pig oesophagus. J Physiol 553:575–587

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Lauve A, Patterson LM, Berthoud HR (1997) Limited excitatory local effector function of gastric vagal afferent intraganglionic terminals in rats. Am J Physiol 273:G661–G669

    CAS  PubMed  Google Scholar 

  • Zini S, Roisin MP, Armengaud C, Ben-Ari Y (1993) Effect of potassium channel modulators on the release of glutamate induced by ischaemic-like conditions in rat hippocampal slices. Neurosci Lett 153:202–205

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The skilful technical assistance of Anita Hecht, Stefanie Link, Karin Löschner, Hedwig Symowski, Andrea Hilpert, and Inge Zimmermann is gratefully acknowledged. We especially thank J. Wörl for providing the mice and F. Schrödl for critical revision of the manuscript. This study was supported by the Johannes und Frieda Marohn-Stiftung, Erlangen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Raab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raab, M., Neuhuber, W.L. Intraganglionic laminar endings and their relationships with neuronal and glial structures of myenteric ganglia in the esophagus of rat and mouse. Histochem Cell Biol 122, 445–459 (2000). https://doi.org/10.1007/s00418-004-0703-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-004-0703-z

Keywords

Navigation