Skip to main content
Log in

Vesicular glutamate transporter 1 immunoreactivity in extrinsic and intrinsic innervation of the rat esophagus

  • Original paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Encouraged by the recent finding of vesicular glutamate transporter 2 (VGLUT2) immunoreactivity (-ir) in intraganglionic laminar endings (IGLEs) of the rat esophagus, we investigated also the distribution and co-localization patterns of VGLUT1. Confocal imaging revealed substantial co-localization of VGLUT1-ir with selective markers of IGLEs, i.e., calretinin and VGLUT2, indicating that IGLEs contain both VGLUT1 and VGLUT2 within their synaptic vesicles. Besides IGLEs, we found VGLUT1-ir in both cholinergic and nitrergic myenteric neuronal cell bodies, in fibers of the muscularis mucosae, and in esophageal motor endplates. Skeletal neuromuscular junctions, in contrast, showed no VGLUT1-ir. We also tested for probable co-localization of VGLUT1-ir with markers of extrinsic and intrinsic esophageal innervation and glia. Within the myenteric neuropil we found, besides co-localization of VGLUT1 and substance P, no further co-localization of VGLUT1-ir with any of these markers. In the muscularis mucosae some VGLUT1-ir fibers were shown to contain neuronal nitric oxide synthase (nNOS)-ir. VGLUT1-ir in esophageal motor endplates was partly co-localized with vesicular acetylcholine transporter (VAChT)/choline acetyltransferase (ChAT)-ir, but VGLUT1-ir was also demonstrated in separately terminating fibers at motor endplates co-localized neither with ChAT/VAChT-ir nor with nNOS-ir, suggesting a hitherto unknown glutamatergic enteric co-innervation. Thus, VGLUT1-ir was found in extrinsic as well as intrinsic innervation of the rat esophagus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1–4
Fig. 4–8
Fig. 9–12

Similar content being viewed by others

References

  • Aimi Y, Kimura H, Kinoshita T, Minami Y, Fujimura M, Vincent SR (1993) Histochemical localization of nitric oxide synthase in rat enteric nervous system. Neuroscience 53:553–560

    PubMed  CAS  Google Scholar 

  • Alvarez FJ, Villalba RM, Zerda R, Schneider SP (2004) Vesicular glutamate transporters in the spinal cord, with special reference to sensory primary afferent synapses. J Comp Neurol 472:257–280

    PubMed  CAS  Google Scholar 

  • Anlauf M, Schafer MK, Eiden LE, Weihe E (2003) Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes. J Comp Neurol 459:90–111

    PubMed  CAS  Google Scholar 

  • Bai L, Zhang X, Ghishan FK (2003) Characterization of vesicular glutamate transporter in pancreatic alpha- and beta-cells and its regulation by glucose. Am J Physiol Gastrointest Liver Physiol 284:G808–G814

    PubMed  CAS  Google Scholar 

  • Bellocchio EE, Hu H, Pohorille A, Chan J, Pickel VM, Edwards RH (1998) The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission. J Neurosci 18:8648–8659

    PubMed  CAS  Google Scholar 

  • Bellocchio EE, Reimer RJ, Fremeau RT Jr, Edwards RH (2000) Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289:957–960

    PubMed  CAS  Google Scholar 

  • Berthoud HR, Powley TL (1992) Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor. J Comp Neurol 319:261–276

    PubMed  CAS  Google Scholar 

  • Berthoud HR, Patterson LM, Neumann F, Neuhuber WL (1997) Distribution and structure of vagal afferent intraganglionic laminar endings (IGLEs) in the rat gastrointestinal tract. Anat Embryol (Berl) 195:183–191

    CAS  Google Scholar 

  • Boeckxstaens GE, Pelckmans PA, Ruytjens IF, Bult H, De Man JG, Herman AG, Van Maercke YM (1991) Bioassay of nitric oxide released upon stimulation of non-adrenergic non-cholinergic nerves in the canine ileocolonic junction. Br J Pharmacol 103:1085–1091

    PubMed  CAS  Google Scholar 

  • Boulland JL, Qureshi T, Seal RP, Rafiki A, Gundersen V, Bergersen LH, Fremeau RT Jr, Edwards RH, Storm-Mathisen J, Chaudhry FA (2004) Expression of the vesicular glutamate transporters during development indicates the widespread corelease of multiple neurotransmitters. J Comp Neurol 480:264–280

    PubMed  CAS  Google Scholar 

  • Costa M, Furness JB, Pompolo S, Brookes SJ, Bornstein JC, Bredt DS, Snyder SH (1992) Projections and chemical coding of neurons with immunoreactivity for nitric oxide synthase in the guinea-pig small intestine. Neurosci Lett 148:121–125

    PubMed  CAS  Google Scholar 

  • Delbro D (1985) The role of substance P in the control of gut motility. In: Hakanson R, Sundler F (eds) Tachykinin antagonists. Elsevier, Amsterdam, pp 223–230

    Google Scholar 

  • Dütsch M, Eichhorn U, Wörl J, Wank M, Berthoud HR, Neuhuber WL (1998) Vagal and spinal afferent innervation of the rat esophagus: a combined retrograde tracing and immunocytochemical study with special emphasis on calcium-binding proteins. J Comp Neurol 398:289–307

    PubMed  Google Scholar 

  • Ewald P, Neuhuber WL, Raab M (2004) Intraganglionic laminar endings (IGLEs) in the esophagus of rat contain both vesicular glutamate transporters 1 and 2. Ann Anat Suppl 186:97

    Google Scholar 

  • Fox EA, Phillips RJ, Martinson FA, Baronowsky EA, Powley TL (2000) Vagal afferent innervation of smooth muscle in the stomach and duodenum of the mouse: morphology and topography. J Comp Neurol 428:558–576

    PubMed  CAS  Google Scholar 

  • Fremeau J, Robert T, Voglmaier S, Seal RP, Edwards RH (2004a) VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci 27:98–103

    PubMed  CAS  Google Scholar 

  • Fremeau RT Jr, Kam K, Qureshi T, Johnson J, Copenhagen DR, Storm-Mathisen J, Chaudhry FA, Nicoll RA, Edwards RH (2004b) Vesicular glutamate transporters 1 and 2 target to functionally distinct synaptic release sites. Science 304:1815–1819

    PubMed  CAS  Google Scholar 

  • Fremeau RT Jr, Troyer MD, Pahner I, Nygaard GO, Tran CH, Reimer RJ, Bellocchio EE, Fortin D, Storm-Mathisen J, Edwards RH (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260

    PubMed  CAS  Google Scholar 

  • Fremeau RT Jr, Burman J, Qureshi T, Tran CH, Proctor J, Johnson J, Zhang H, Sulzer D, Copenhagen DR, Storm-Mathisen J, Reimer RJ, Chaudhry FA, Edwards RH (2002) The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc Natl Acad Sci USA 99:14488–14493

    PubMed  CAS  Google Scholar 

  • Fu WM, Liou HC, Chen YH, Wang SM (1998) Coexistence of glutamate and acetylcholine in the developing motoneurons. Chin J Physiol 41:127–132

    PubMed  CAS  Google Scholar 

  • Furness JB, Costa M (1974) The adrenergic innervation of the gastrointestinal tract. Ergeb Physiol 69:2–51

    PubMed  CAS  Google Scholar 

  • Furness JB, Costa M (1987) The enteric nervous system. Churchill Livingstone, Longman Group UK, Edinburgh

    Google Scholar 

  • Giaroni C, Somaini L, Marino F, Cosentino M, Senaldi A, De Ponti F, Lecchini S, Frigo G (1999) Modulation of enteric cholinergic neurons by hetero- and autoreceptors: cooperation among inhibitory inputs. Life Sci 65:813–821

    PubMed  CAS  Google Scholar 

  • Gras C, Herzog E, Bellenchi GC, Bernard V, Ravassard P, Pohl M, Gasnier B, Giros B, El Mestikawy S (2002) A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J Neurosci 22:5442–5451

    PubMed  CAS  Google Scholar 

  • Grundy D, Gharib-Naseri MK, Hutson D (1993) Role of nitric oxide and vasoactive intestinal polypeptide in vagally mediated relaxation of the gastric corpus in the anaesthetized ferret. J Auton Nerv Syst 43:241–246

    PubMed  CAS  Google Scholar 

  • Hayashi M, Yamada H, Uehara S, Morimoto R, Muroyama A, Yatsushiro S, Takeda J, Yamamoto A, Moriyama Y (2003) Secretory granule-mediated co-secretion of l-glutamate and glucagon triggers glutamatergic signal transmission in islets of Langerhans. J Biol Chem 278:1966–1974

    PubMed  CAS  Google Scholar 

  • Herzog E, Bellenchi GC, Gras C, Bernard V, Ravassard P, Bedet C, Gasnier B, Giros B, El Mestikawy S (2001) The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J Neurosci 21:RC181

    PubMed  CAS  Google Scholar 

  • Herzog E, Gilchrist J, Gras C, Muzerelle A, Ravassard P, Giros B, Gaspar P, El Mestikawy S (2004) Localization of VGLUT3, the vesicular glutamate transporter type 3, in the rat brain. Neuroscience 123:983–1002

    PubMed  CAS  Google Scholar 

  • Hillsley K, Schemann M, Grundy D (1992) Alpha-adrenoreceptor modulation of neurally evoked circular muscle responses of the guinea pig stomach. J Auton Nerv Syst 40:57–62

    PubMed  CAS  Google Scholar 

  • Holzer P (1988) Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 24:739–768

    PubMed  CAS  Google Scholar 

  • Israel M, Lesbats B, Bruner J (1993) Glutamate and acetylcholine release from cholinergic nerve terminals, a calcium control of the specificity of the release mechanism. Neurochem Int 22:53–58

    PubMed  CAS  Google Scholar 

  • Izumi N, Matsuyama H, Ko M, Shimizu Y, Takewaki T (2003) Role of intrinsic nitrergic neurones on vagally mediated striated muscle contractions in the hamster oesophagus. J Physiol 551:287–294

    PubMed  CAS  Google Scholar 

  • Kaneko T, Fujiyama F, Hioki H (2002) Immunohistochemical localization of candidates for vesicular glutamate transporters in the rat brain. J Comp Neurol 444:39–62

    PubMed  CAS  Google Scholar 

  • Keast JR, Stephensen TM (2000) Glutamate and aspartate immunoreactivity in dorsal root ganglion cells supplying visceral and somatic targets and evidence for peripheral axonal transport. J Comp Neurol 424:577–587

    PubMed  CAS  Google Scholar 

  • Kerr KP (2000) Effects of tachykinin receptor agonists and antagonists on the guinea-pig isolated oesophagus. Clin Exp Pharmacol Physiol 27:934–938

    PubMed  CAS  Google Scholar 

  • King SC, Slater P, Turnberg LA (1989) Autoradiographic localization of binding sites for galanin and VIP in small intestine. Peptides 10:313–317

    PubMed  CAS  Google Scholar 

  • Kirchgessner AL, Liu MT, Gershon MD (1994) NADPH diaphorase (nitric oxide synthase)-containing nerves in the enteropancreatic innervation: sources, co-stored neuropeptides, and pancreatic function. J Comp Neurol 342:115–130

    PubMed  CAS  Google Scholar 

  • Kirchgessner AL, Liu MT, Alcantara F (1997) Excitotoxicity in the enteric nervous system. J Neurosci 17:8804–8816

    PubMed  CAS  Google Scholar 

  • Kraus T, Neuhuber WL, Raab M (2004) Vesicular glutamate transporter 1 immunoreactivity in motor endplates of striated esophageal but not skeletal muscles in the mouse. Neurosci Lett 360:53–56

    PubMed  CAS  Google Scholar 

  • Kressel M, Radespiel-Tröger M (1999) Anterograde tracing and immunohistochemical characterization of potentially mechanosensitive vagal afferents in the esophagus. J Comp Neurol 412:161–172

    PubMed  CAS  Google Scholar 

  • Kuramoto H, Brookes SJ (2000) Cholinergic and nitrergic innervation of the rat esophagus. In: Krammer HJ, Singer MV (eds) Neurogastroenterology from the basics to the clinics. Kluwer Academic/Falk Foundation, Dordrecht, pp 78–82

    Google Scholar 

  • Larzabal A, Losada J, Mateos JM, Benitez R, Garmilla IJ, Kuhn R, Grandes P, Sarria R (1999) Distribution of the group II metabotropic glutamate receptors (mGluR2/3) in the enteric nervous system of the rat. Neurosci Lett 276:91–94

    PubMed  CAS  Google Scholar 

  • Lawrence AJ, Watkins D, Jarrott B (1995) Visualization of beta-adrenoceptor binding sites on human inferior vagal ganglia and their axonal transport along the rat vagus nerve. J Hypertens 13:631–635

    PubMed  CAS  Google Scholar 

  • Li ZS, Furness JB (1998) Immunohistochemical localisation of cholinergic markers in putative intrinsic primary afferent neurons of the guinea-pig small intestine. Cell Tissue Res 294:35–43

    PubMed  CAS  Google Scholar 

  • Li JL, Fujiyama F, Kaneko T, Mizuno N (2003a) Expression of vesicular glutamate transporters, VGluT1 and VGluT2, in axon terminals of nociceptive primary afferent fibers in the superficial layers of the medullary and spinal dorsal horns of the rat. J Comp Neurol 457:236–249

    PubMed  CAS  Google Scholar 

  • Li JL, Xiong KH, Dong YL, Fujiyama F, Kaneko T, Mizuno N (2003b) Vesicular glutamate transporters, VGluT1 and VGluT2, in the trigeminal ganglion neurons of the rat, with special reference to coexpression. J Comp Neurol 463:212–220

    PubMed  CAS  Google Scholar 

  • Li WC, Soffe SR, Roberts A (2004) Glutamate and acetylcholine corelease at developing synapses. Proc Natl Acad Sci USA 101:15488–15493

    PubMed  CAS  Google Scholar 

  • Liou HC, Yang RS, Fu WM (1996) Potentiation of spontaneous acetylcholine release from motor nerve terminals by glutamate in Xenopus tadpoles. Neuroscience 75:325–331

    PubMed  CAS  Google Scholar 

  • Liu MT, Rothstein JD, Gershon MD, Kirchgessner AL (1997) Glutamatergic enteric neurons. J Neurosci 17:4764–4784

    PubMed  CAS  Google Scholar 

  • Maggi CA (1995) Tachykinins and calcitonin gene-related peptide (CGRP) as co-transmitters released from peripheral endings of sensory nerves. Prog Neurobiol 45:1–98

    PubMed  CAS  Google Scholar 

  • Mann PT, Southwell BR, Young HM, Furness JB (1997) Appositions made by axons of descending interneurons in the guinea-pig small intestine, investigated by confocal microscopy. J Chem Neuroanat 12:151–164

    PubMed  CAS  Google Scholar 

  • Matsuda H, Brumovsky PR, Kopp J, Pedrazzini T, Hokfelt T (2002) Distribution of neuropeptide Y Y1 receptors in rodent peripheral tissues. J Comp Neurol 449:390–404

    PubMed  CAS  Google Scholar 

  • Meister B, Arvidsson U, Zhang X, Jacobsson G, Villar MJ, Hokfelt T (1993) Glutamate transporter mRNA and glutamate-like immunoreactivity in spinal motoneurones. Neuroreport 5:337–340

    PubMed  CAS  Google Scholar 

  • Mentis GZ, Alvarez FJ, Bonnot A, Richards DS, Gonzalez-Forero D, Zerda R, O’Donovan M J (2005) Noncholinergic excitatory actions of motoneurons in the neonatal mammalian spinal cord. Proc Natl Acad Sci USA 102:7344–7349

    PubMed  CAS  Google Scholar 

  • Morimoto R, Hayashi M, Yatsushiro S, Otsuka M, Yamamoto A, Moriyama Y (2003) Co-expression of vesicular glutamate transporters (VGLUT1 and VGLUT2) and their association with synaptic-like microvesicles in rat pinealocytes. J Neurochem 84:382–391

    PubMed  CAS  Google Scholar 

  • Morris JL, Konig P, Shimizu T, Jobling P, Gibbins IL (2005) Most peptide-containing sensory neurons lack proteins for exocytotic release and vesicular transport of glutamate. J Comp Neurol 483:1–16

    PubMed  CAS  Google Scholar 

  • Neuhuber WL (1987) Sensory vagal innervation of the rat esophagus and cardia: a light and electron microscopic anterograde tracing study. J Auton Nerv Syst 20:243–255

    PubMed  CAS  Google Scholar 

  • Neuhuber WL, Clerc N (1990) Afferent innervation of the esophagus in cat and rat. In: Zenker W, Neuhuber WL (eds) The primary afferent neuron. Plenum Press, New York, pp 93–107

    Google Scholar 

  • Neuhuber WL, Wörl J, Berthoud HR, Conte B (1994) NADPH-diaphorase-positive nerve fibers associated with motor endplates in the rat esophagus: new evidence for co-innervation of striated muscle by enteric neurons. Cell Tissue Res 276:23–30

    PubMed  CAS  Google Scholar 

  • Neuhuber WL, Kressel M, Stark A, Berthoud HR (1998) Vagal efferent and afferent innervation of the rat esophagus as demonstrated by anterograde DiI and DiA tracing: focus on myenteric ganglia. J Auton Nerv Syst 70:92–102

    PubMed  CAS  Google Scholar 

  • Ni B, Wu X, Yan GM, Wang J, Paul SM (1995) Regional expression and cellular localization of the Na(+)-dependent inorganic phosphate cotransporter of rat brain. J Neurosci 15:5789–5799

    PubMed  CAS  Google Scholar 

  • Nishimaru H, Restrepo CE, Ryge J, Yanagawa Y, Kiehn O (2005) Mammalian motor neurons corelease glutamate and acetylcholine at central synapses. Proc Natl Acad Sci USA 102:5245–5249

    PubMed  CAS  Google Scholar 

  • Nonidez JF (1946) Afferent nerves in the intermuscular plexus of the dog’s oesophagus. J Comp Neurol 85:177–189

    Google Scholar 

  • Oliveira AL, Hydling F, Olsson E, Shi T, Edwards RH, Fujiyama F, Kaneko T, Hokfelt T, Cullheim S, Meister B (2003) Cellular localization of three vesicular glutamate transporter mRNAs and proteins in rat spinal cord and dorsal root ganglia. Synapse 50:117–129

    PubMed  CAS  Google Scholar 

  • Page AJ, Slattery JA, O’Donnell T A, Cooper NJ, Young RL, Blackshaw LA (2005) Modulation of gastro-oesophageal vagal afferents by galanin in mouse and ferret. J Physiol 563:809–819

    PubMed  CAS  Google Scholar 

  • Phillips RJ, Powley TL (2000) Tension and stretch receptors in gastrointestinal smooth muscle: re- evaluating vagal mechanoreceptor electrophysiology. Brain Res Brain Res Rev 34:1–26

    PubMed  CAS  Google Scholar 

  • Pralong E, Magistretti PJ (1995) Noradrenaline increases K-conductance and reduces glutamatergic transmission in the mouse entorhinal cortex by activation of alpha 2-adrenoreceptors. Eur J Neurosci 7:2370–2378

    PubMed  CAS  Google Scholar 

  • Raab M, Neuhuber WL (2003) Vesicular glutamate transporter 2 immunoreactivity in putative vagal mechanosensor terminals of mouse and rat esophagus: indication of a local effector function? Cell Tissue Res 312:141–148

    PubMed  CAS  Google Scholar 

  • Raab M, Neuhuber WL (2004) Intraganglionic laminar endings and their relationships with neuronal and glial structures of myenteric ganglia in the esophagus of rat and mouse. Histochem Cell Biol 122:445–459

    PubMed  CAS  Google Scholar 

  • Raab M, Neuhuber WL (2005) Number and distribution of intraganglionic laminar endings in the mouse esophagus as demonstrated with two different immunohistochemical markers. J Histochem Cytochem 53:1023–1031

    PubMed  CAS  Google Scholar 

  • Raab M, Wörl J, Brehmer A, Neuhuber WL (2003) Reduction of NT-3 or TrkC results in fewer putative vagal mechanoreceptors in the mouse esophagus. Auton Neurosci 108:22–31

    PubMed  CAS  Google Scholar 

  • Rodrigo J, Hernandez J, Vidal MA, Pedrosa JA (1975) Vegetative innervation of the esophagus. II. Intraganglionic laminar endings. Acta Anat 92:79–100

    Article  PubMed  CAS  Google Scholar 

  • Rodrigo J, de Felipe J, Robles-Chillida EM, Perez Anton JA, Mayo I, Gomez A (1982) Sensory vagal nature and anatomical access paths to esophagus laminar nerve endings in myenteric ganglia. Determination by surgical degeneration methods. Acta Anat (Basel) 112:47–57

    CAS  Google Scholar 

  • Saha S, Batten TF, McWilliam PN (1995) Glutamate-immunoreactivity in identified vagal afferent terminals of the cat: a study combining horseradish peroxidase tracing and postembedding electron microscopic immunogold staining. Exp Physiol 80:193–202

    PubMed  CAS  Google Scholar 

  • Saji M, Miura M (1991) Coexistence of glutamate and choline acetyltransferase in a major subpopulation of laryngeal motoneurons of the rat. Neurosci Lett 123:175–178

    PubMed  CAS  Google Scholar 

  • Sakata-Haga H, Kanemoto M, Maruyama D, Hoshi K, Mogi K, Narita M, Okado N, Ikeda Y, Nogami H, Fukui Y, Kojima I, Takeda J, Hisano S (2001) Differential localization and co-localization of two neuron-types of sodium-dependent inorganic phosphate cotransporters in rat forebrain. Brain Res 902:143–155

    PubMed  CAS  Google Scholar 

  • Sang Q, Young HM (1997) Development of nicotinic receptor clusters and innervation accompanying the change in muscle phenotype in the mouse esophagus. J Comp Neurol 386:119–136

    PubMed  CAS  Google Scholar 

  • Schaffar N, Rao H, Kessler J-P, Jean A (1997) Immunohistochemical detection of glutamate in rat vagal sensory neurons. Brain Res 778:302–308

    PubMed  CAS  Google Scholar 

  • Schäfer MK, Varoqui H, Defamie N, Weihe E, Erickson JD (2002) Molecular cloning and functional identification of mouse vesicular glutamate transporter 3 and its expression in subsets of novel excitatory neurons. J Biol Chem 277:50734–50748

    PubMed  Google Scholar 

  • Senba E, Kaneko T, Mizuno N, Tohyama M (1991) Somato-, branchio- and viscero-motor neurons contain glutaminase-like immunoreactivity. Brain Res Bull 26:85–97

    PubMed  CAS  Google Scholar 

  • Stornetta RL, Sevigny CP, Guyenet PG (2002) Vesicular glutamate transporter DNPI/VGLUT2 mRNA is present in C1 and several other groups of brainstem catecholaminergic neurons. J Comp Neurol 444:191–206

    PubMed  CAS  Google Scholar 

  • Talman WT, Perrone MH, Reis DJ (1980) Evidence for L-glutamate as the neurotransmitter of baroreceptor afferent nerve fibers. Science 209:813–815

    PubMed  CAS  Google Scholar 

  • Tamura K, Palmer JM, Winkelmann CK, Wood JD (1988) Mechanism of action of galanin on myenteric neurons. J Neurophysiol 60:966–979

    PubMed  CAS  Google Scholar 

  • Todd AJ, Hughes DI, Polgar E, Nagy GG, Mackie M, Ottersen OP, Maxwell DJ (2003) The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn. Eur J Neurosci 17:13–27

    PubMed  CAS  Google Scholar 

  • Tong Q, Kirchgessner AL (2003) Localization and function of metabotropic glutamate receptor 8 in the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 285(5):G992–G1003

    PubMed  CAS  Google Scholar 

  • Tong Q, Ma J, Kirchgessner AL (2001) Vesicular glutamate transporter 2 in the brain-gut axis. Neuroreport 12:3929–3934

    PubMed  CAS  Google Scholar 

  • Ulus IH, Buyukuysal RL, Wurtman RJ (1992) N-methyl-d-aspartate increases acetylcholine release from rat striatum and cortex: its effect is augmented by choline. J Pharmacol Exp Ther 261:1122–1128

    PubMed  CAS  Google Scholar 

  • Varoqui H, Schäfer MK, Zhu H, Weihe E, Erickson JD (2002) Identification of the differentiation-associated Na+/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci 22:142–155

    PubMed  CAS  Google Scholar 

  • Vizi ES (1974) Interaction between adrenergic and cholinergic systems: presynaptic inhibitory effect of noradrenaline on acetylcholine release. J Neural Transm Suppl 11:61–78

    CAS  Google Scholar 

  • Vyas S, Bradford HF (1987) Co-release of acetylcholine, glutamate and taurine from synaptosomes of Torpedo electric organ. Neurosci Lett 82:58–64

    PubMed  CAS  Google Scholar 

  • Vyskocil F (2003) Early postdenervation depolarization is controlled by acetylcholine and glutamate via nitric oxide regulation of the chloride transporter. Neurochem Res 28:575–585

    PubMed  CAS  Google Scholar 

  • Waerhaug O, Ottersen OP (1993) Demonstration of glutamate-like immunoreactivity at rat neuromuscular junctions by quantitative electron microscopic immunocytochemistry. Anat Embryol (Berl) 188:501–513

    CAS  Google Scholar 

  • Wang FB, Powley TL (2000) Topographic inventories of vagal afferents in gastrointestinal muscle. J Comp Neurol 421:302–324

    PubMed  CAS  Google Scholar 

  • Wang ZJ, Neuhuber WL (2003) Intraganglionic laminar endings in the rat esophagus contain purinergic P2X2 and P2X3 receptor immunoreactivity. Anat Embryol (Berl) 207:363–371

    CAS  Google Scholar 

  • Willis WD, Coggeshall RE (1991) Sensory mechanisms of the spinal cord, 2nd edn. Plenum Press, New York

    Google Scholar 

  • Wojcik SM, Rhee JS, Herzog E, Sigler A, Jahn R, Takamori S, Brose N, Rosenmund C (2004) An essential role for vesicular glutamate transporter 1 (VGLUT1) in postnatal development and control of quantal size. Proc Natl Acad Sci USA 101:7158–7163

    PubMed  CAS  Google Scholar 

  • Wörl J, Neuhuber WL (2005) Enteric co-innervation of motor endplates in the esophagus: state of the art ten years after. Histochem Cell Biol 123:117–130

    PubMed  Google Scholar 

  • Wörl J, Mayer B, Neuhuber WL (1994) Nitrergic innervation of the rat esophagus: focus on motor endplates. J Auton Nerv Syst 49:227–233

    PubMed  Google Scholar 

  • Wörl J, Fischer J, Neuhuber WL (1998) Nonvagal origin of galanin-containing nerve terminals innervating striated muscle fibers of the rat esophagus. Cell Tissue Res 292:453–461

    PubMed  Google Scholar 

  • Xiang Z, Burnstock G (2004) P2X2 and P2X3 purinoceptors in the rat enteric nervous system. Histochem Cell Biol 121:169–179

    PubMed  CAS  Google Scholar 

  • Zagorodnyuk VP, Brookes SJ (2000) Transduction sites of vagal mechanoreceptors in the guinea pig esophagus. J Neurosci 20:6249–6255

    PubMed  CAS  Google Scholar 

  • Zagorodnyuk VP, Chen BN, Brookes SJ (2001) Intraganglionic laminar endings are mechano-transduction sites of vagal tension receptors in the guinea-pig stomach. J Physiol 534:255–268

    PubMed  CAS  Google Scholar 

  • Zagorodnyuk VP, Chen BN, Costa M, Brookes SJ (2003) Mechanotransduction by intraganglionic laminar endings of vagal tension receptors in the guinea-pig oesophagus. J Physiol 553:575–587

    PubMed  CAS  Google Scholar 

  • Zheng H, Lauve A, Patterson LM, Berthoud HR (1997) Limited excitatory local effector function of gastric vagal afferent intraganglionic terminals in rats. Am J Physiol 273:G661–G669

    PubMed  CAS  Google Scholar 

  • Zhuo H, Ichikawa H, Helke CJ (1997) Neurochemistry of the nodose ganglion. Prog Neurobiol 52:79–107

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The skilful technical assistance of Anita Hecht, Stefanie Link, Karin Löschner, and Hedwig Symowski is gratefully acknowledged. This study was supported by Johannes und Frieda Marohn-Stiftung, Erlangen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Raab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ewald, P., Neuhuber, W. & Raab, M. Vesicular glutamate transporter 1 immunoreactivity in extrinsic and intrinsic innervation of the rat esophagus. Histochem Cell Biol 125, 377–395 (2006). https://doi.org/10.1007/s00418-005-0083-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-005-0083-z

Keywords

Navigation