Skip to main content
Log in

Potassium Solubilizing Microorganisms as Potential Biofertilizer: A Sustainable Climate-Resilient Approach to Improve Soil Fertility and Crop Production in Agriculture

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Potassium is the third most important macronutrient for proper growth of plants and its deficiency limits crop quality and yield. In soil, potassium (K) exists in different forms viz. water-soluble K, exchangeable, non-exchangeable, and mineral forms. The unavailable minerals forms such as feldspar, orthoclase and the micas are relatively resistant to decomposition and constitute about 90–98% of the total K in most soils. Therefore, minerals forms provide relatively minor quantities of K to growing crop plants. Fixation of applied fertilizer in insoluble forms in soil, its leaching, and the uptake of soluble K by plants reduces the availability of K in soils. The fixed form of K in minerals is solubilized by some microorganisms, which then enhance acquisition of K by crop plants. These potassium solubilizing microbes (KSMs) secrete various organic acids and produce exopolysaccharides, and metal-complexing ligands that contribute towards release of K from minerals. Climate change induced environmental stresses affect soil microbial community and their beneficial biological activities including K solubilization. Molecular analysis of KSMs and plants showed that various microbial and plant K+ transporter proteins facilitate the absorption of soluble form of K from the soil. These beneficial KSMs have recently been recommended for application as biofertilizer in various crops, and have been demonstrated to improve availability of nutrients and crop productivity in sustainable agriculture. The present manuscript presents an overview of potassium solubilizing microbes, mechanisms of K solubilization and molecular mechanism of K uptake by microbes and plants. Effect of environmental factors on K solubilization and the use of KSMs as biofertilizer for promoting plant growth and crop yield in a cost-effective, eco-friendly and sustainable manner are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All the data, figures and tables have been submitted with the manuscript.

References

  • Aanderud ZT, Schoolmaster DR, Lennon JT (2011) Plants mediate the sensitivity of soil respiration to rainfall variability. Ecosystems 14:156–167

    Article  CAS  Google Scholar 

  • Abou-el-Seoud II, Abdel-Megeed A (2012) Impact of rock materials and biofertilizations on P and K availability for maize (Zea mays) under calcareous soil conditions. Saudi J Biol Sci 19(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Adeleke R, Cloete TE, Bertrands A, Khasa D (2010) Mobilization of potassium and phosphorus from iron ore by ectomycorrhizal fungi. World J Microbiol Biotechnol 26:1901–1913

    Article  CAS  Google Scholar 

  • Adnan M, Shah Z, Fahad S et al (2017) Phosphate-solubilizing bacteria nullify the antagonistic effect of soil calcification on bioavailability of phosphorus in alkaline soils. Sci Rep 7:1–13. https://doi.org/10.1038/s41598-017-16537-5

    Article  CAS  Google Scholar 

  • Ajala OA, Ajibade FO, Oluwadipe OR, Nwogwu NA, Adelodun B, Guadie A, Ajibade TF, Lasisi KH, Adewumi JR (2022) Microbial impact on climate-smart agricultural practices. In: Kumar A, Singh J, Ferreira LFR (eds) Microbiome under changing climate. Woodhead Publishing, Sawston, pp 203–236. https://doi.org/10.1016/B978-0-323-90571-8.00009-2

    Chapter  Google Scholar 

  • Aleksandrov VG, Blagodyr RN, Live IP (1967) Liberation of phosphoric acid from apatite by silicate bacteria. Microchem J 29:111–114

    CAS  Google Scholar 

  • Ali AA, Awad MYM, Hegab SA, Abd El Gawad AM, Eissa MA (2021) Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato. J Plant Nutr 44(3):411–420. https://doi.org/10.1080/01904167.2020.1822399

    Article  CAS  Google Scholar 

  • Allison SD, Martiny JB (2008) Resistance, resilience, and redundancy in microbial communities. Proc Nat Acad Sci 105(supplement 1):11512–11519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida HJ, Pancelli MA, Prado RM, Cavalcante VS, Cruz FJR (2015) Effect of potassium on nutritional status and productivity of peanuts in succession with sugar cane. J Soil Sci Plant Nutr 15(1):1–10

    Google Scholar 

  • Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, Finn RD et al (2021) A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol 39(1):105–114

    Article  CAS  PubMed  Google Scholar 

  • Alves L, Oliveira VL, Filho GNS (2010) Utilization of rocks and ectomycorrhizal fungi to promote growth of eucalyptius. Braz J Microbiol 41:676–684

    Article  CAS  Google Scholar 

  • Amaya-Gomez CV, Porcel M, Mesa-Garriga L, Gomez-Alvarez MI (2022) A framework for the selection of plant growth-promoting rhizobacteria based on bacterial competence mechanisms. Appl Environ Microbiol 86(14):e00760-20

    Google Scholar 

  • Amtmann A, Troufflard S, Armengaud P (2008) The effect of potassium nutrition on pest and disease resistance in plants. Physiol Plant 133:682–691. https://doi.org/10.1111/j.1399-3054.2008.01075.x

    Article  CAS  PubMed  Google Scholar 

  • Amy C, Avice J-C, Laval K, Bressan (2022) Are native phosphate solubilizing bacteria a relevant alternative to mineral fertilizations for crops? Part I when rhizobacteria meet plant P requirements. Rhizosphere 21:100476. https://doi.org/10.1016/j.rhisph.2022.100476

    Article  Google Scholar 

  • Anjanadevi IP, John NS, John KS, Jeeva ML, Misra RS (2016) Rock inhabiting potassium solubilizing bacteria from Kerala, India: characterization and possibility in chemical K fertilizer substitution. J Basic Microbiol 56:67–77

    Article  CAS  PubMed  Google Scholar 

  • Anwar AR, Ala A, Kuswinanti T (2022) The ability of potassium-solubilizing fungi isolated from leucite potassium rock deposits. Biodiversitas 23(12):6579–6586. https://doi.org/10.13057/biodiv/d231257

    Article  Google Scholar 

  • Archana DS, Nandish MS, Savalagi VP, Alagawadi AR (2013) Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. Bioinfolet 10(1b):248–257

    Google Scholar 

  • Arenas F, Lopez-Garcia Á (2022) Desert truffle mycorrhizosphere harbors organic acid releasing plant growth-promoting rhizobacteria, essentially during the truffle fruiting season. Mycorrhiza. https://doi.org/10.1007/s00572-021-01067-w

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashfaq M, Hassan HM, Ghazali AH, Ahmad M (2020) Halotolerant potassium solubilizing plant growth promoting rhizobacteria may improve potassium availability under saline conditions. Environ Monit Assess 192:697. https://doi.org/10.1007/s10661-020-08655-x

    Article  CAS  PubMed  Google Scholar 

  • Ashley MK, Grant M, Grabov A (2006) Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot 57:425–436

    Article  CAS  PubMed  Google Scholar 

  • Averill C, Turner BL, Finzi AC (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505(7484):543–545

    Article  CAS  PubMed  Google Scholar 

  • Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46:84–101

    Article  CAS  PubMed  Google Scholar 

  • Azeem M, Soundari PG, Ali A, Tahir MI, Imran M, Bashir S, Zhang Z et al (2022) Soil metaphenomics: a step forward in metagenomics. Arch Agron Soil Sci 68(12):1645–1663

    Article  CAS  Google Scholar 

  • Badr MA (2006) Efficiency of K-feldspar combined with organic materials and silicate dissolving bacteria on tomato yield. J Appl Sci Res 2:1191–1198

    Google Scholar 

  • Badr MA, Shafei AM, El-Deen Sharaf SH (2006) The dissolution of K and phosphorus bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. Res J Agr Bio Sci 2:5–11

    Google Scholar 

  • Bagyalakshmi B, Balamurugan A, Ponmurugan P, Premkumar R (2012) Compatibility study of indigenous plant growth promoting rhizobacteria with inorganic and organic fertilizers used in tea (Camellia sinensis). Intern J Agric Res 7(3):144–151

    Article  Google Scholar 

  • Bagyalakshmi B, Ponmurugan P, Balamurugan A (2017) Potassium solubilization, plant growth promoting substances by potassium solubilizing bacteria (KSB) from southern Indian tea plantation soil. Biocatal Agric Biotechnol 12:116–124. https://doi.org/10.1016/j.bcab.2017.09.011

    Article  Google Scholar 

  • Bakhshandeh E, Rahimian H, Pirdashti H, Nematzadeh GA (2014) Phosphate solubilization potential and modeling of stress tolerance of rhizobacteria from rice paddy soil in northern Iran. World J Microbiol Biotechnol 30(9):2437–2447. https://doi.org/10.1007/s11274-014-1669-1

    Article  CAS  PubMed  Google Scholar 

  • Bakhshandeh E, Gholamhosseini M, Yaghoubian Y, Pirdashti H (2020) Plant growth promoting microorganisms can improve germination, seedling growth and potassium uptake of soybean under drought and salt stress. Plant Growth Regul 90(1):123–136

    Article  CAS  Google Scholar 

  • Banerjee S, van der Heijden MG (2023) Soil microbiomes and one health. Nat Rev Microbiol 21(1):6–20

    Article  CAS  PubMed  Google Scholar 

  • Bangun IH, Hanum H, Sabrina T (2023) Isolation and molecular characterization of potassium-solubilizing bacteria from limestone mountain of Bahorok, Langkat District, Indonesia. Biodiversitas 24(7):4175–4184. https://doi.org/10.13057/biodiv/d240757

    Article  Google Scholar 

  • Bañuelos MA, Klein RD, Alexander-Bowman SJ, Rodríguez-Navarro AA (1995) Potassium transporter of the yeast Schwanniomyces occidentalis homologous to the Kup system of Escherichia coli has a high concentrative capacity. EMBO J 14:3021–3027

    Article  PubMed  PubMed Central  Google Scholar 

  • Banuelos MA, Madrid R, Rodríguez-Navarro A (2000) Individual functions of the HAK and TRK potassium transporters of Schwanniomyces occidentalis. Mol Microbiol 37:671–679

    Article  CAS  PubMed  Google Scholar 

  • Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D (2018) Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front Microbiol 9:1606

    Article  PubMed  PubMed Central  Google Scholar 

  • Barre P, Montagnier C, Chenu C, Abbadie L, Velde B (2008) Clay minerals as a soil potassium reservoir: observation and quantification through X-ray diffraction. Plant Soil 302:213–220

    Article  CAS  Google Scholar 

  • Basak BB (2019) Waste mica as alternative source of plant-available potassium: evaluation of agronomic potential through chemical and biological methods. Nat Resour Res 28:953–965. https://doi.org/10.1007/s11053-018-9430-3

    Article  CAS  Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235–255

    Article  CAS  Google Scholar 

  • Basak BB, Biswas DR (2010) Coinoculation of potassium solubilizing and nitrogen-fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biol Fertil Soils 46:641–648

    Article  Google Scholar 

  • Basak BB, Maity A, Ray P, Biswas DR, Roy S (2020) Potassium supply in agriculture through biological potassium fertilizer: a promising and sustainable option for developing countries. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2020.1821191

    Article  Google Scholar 

  • Bazany KE, Wang JT, Delgado-Baquerizo M, Singh BK, Trivedi P (2022) Water deficit affects inter-kingdom microbial connections in plant rhizosphere. Environ Microbiol 24(8):3722–3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benito B, González-Guerrero M (2014) Unravelling potassium nutrition in ectomycorrhizal associations. New Phytol 201:707–709

    Article  CAS  PubMed  Google Scholar 

  • Benito B, Garciadeblás B, Schreier P, Rodríguez-Navarro A (2004) Novel P-type ATPases mediate high-affinity potassium or sodium uptake in fungi. Eukaryot Cell 3:359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benito M, Parker J, Du Q, Wu J, Xiang D, Perou CM, Marron JS (2004) Adjustment of systematic microarray databases. Bioinformatics 20:105–114

    Article  CAS  PubMed  Google Scholar 

  • Benito B, Garciadeblás B, Fraile-Escanciano A, Rodríguez-Navarro A (2011) Potassium and sodium uptake systems in fungi. The transporter diversity of Magnaporthe oryzae. Fungal Genet Biol 48:812–822

    Article  CAS  PubMed  Google Scholar 

  • Bennett EM, Carpenter SR, Caraco NF (2001) Human impact on erodable phosphorus and eutrophication: a global perspective: increasing accumulation of phosphorus in soil threatens rivers, lakes, and coastal oceans with eutrophication. BioScience 51(3):227–234

    Article  Google Scholar 

  • Berthelin J (1983) Microbial weathering processes. In: Krumbein WE (ed) Microbial geochemistry. Blackwell Scientific Publications, Oxford, pp 223–262

    Google Scholar 

  • Bhattacharjee K, Barua S, Chrungoo NK, Joshi SR (2023) Characterization of biomineralizing and plant growth-promoting attributes of lithobiontic bacteria. Curr Microbiol 20(2):80. https://doi.org/10.1007/s00284-022-03176-x

    Article  CAS  Google Scholar 

  • Bin L, Bin W, Mu P, Liu C, Teng HH (2010) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98

    Google Scholar 

  • Biswas DR, Basak BB (2014) Mobilization of potassium from waste mica by potassium-solubilizing bacteria (Bacillus mucilaginosus) as influenced by temperature and incubation period under in vitro laboratory conditions. Agrochimica 58:309–320

    Google Scholar 

  • Biswas R, Sarkar A (2018) ‘Omics’ tools in soil microbiology: the state of the art. In: Adhya T, Lal B, Mohapatra B, Paul D, Das S (eds) Advances in soil microbiology: Recent trends and future prospects. Springer, New York, pp 35–64

    Chapter  Google Scholar 

  • Biswas S, Shivaprakash MK (2022) Influence co-inoculation of phosphobacteria and potash solubilizing bacteria on growth, yield attributes, and nutrient uptake in lettuce (Lactuca sativa L.) under greenhouse conditions. Intern J Agric Plant Sci 4(2):93–97

    Google Scholar 

  • Bittencourt PP, Alves AF, Ferreira MB, da Silva Irineu LES, Pinto VB, Olivares FL (2023) Mechanisms and applications of bacterial inoculants in plant drought stress tolerance. Microorganisms 11:502. https://doi.org/10.3390/microorganisms11020502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blagodatskaya E, Kuzyakov Y (2013) Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem 67:192–211

    Article  CAS  Google Scholar 

  • Blake L, Mercik S, Koerschens M, Goulding KWT, Stempen S, Weigel A, Poulton PR, Powlson DS (1999) Potassium content in soil, uptake in plants and the potassium balance in three European long-term field experiments. Plant Soil 216:1–14

    Article  CAS  Google Scholar 

  • Bopin S, Prajapati K (2022) Growth promoting effect of potassium solubilizing actinomycetes and their ability to promote wheat (Triticum aestivum) growth. Intern J Food Nutri Sci 11(2):1902–1913

    Google Scholar 

  • Boubekri K, Soumare A, Mardad I, Lyamlouli K, Hafidi M, Ouhdouch Y, Kouisni L (2021) The screening of potassium- and phosphate-solubilizing actinobacteria and the assessment of their ability to promote wheat growth parameters. Microorganisms 9(3):470. https://doi.org/10.3390/microorganisms9030470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady NC (1990) The nature and properties of soils. Macmillan, New York, pp 351–380

    Google Scholar 

  • Breitkreuz C, Herzig L, Buscot F, Reitz T, Tarkka M (2021) Interactions between soil properties, agricultural management and cultivar type drive structural and functional adaptations of the wheat rhizosphere microbiome to drought. Environ Microbiol 23(10):5866–5882

    Article  CAS  PubMed  Google Scholar 

  • Breitkreuz C, Reitz T, Schulz E, Tarkka MT (2021) Drought and plant community composition affect the metabolic and genotypic diversity of Pseudomonas strains in grassland soils. Microorganisms 9(8):1677. https://doi.org/10.3390/microorganisms9081677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bünemann EK, Bongiorno G, Bai Z, Creamer RE, De Deyn G, de Goede R, Fleskens L, Geissen V, Kuyper TW, Mäder P et al (2018) Soil quality–a critical review. Soil Biol Biochem 120:105–125

    Article  Google Scholar 

  • Caballero F, Botella MA, Rubio L, Fernández JA, Martínez V, Rubio F (2012) A Ca2+-sensitive system mediates low-affinity K+ uptake in the absence of AKT1 in Arabidopsis plants. Plant Cell Physiol 53:2047–2059

    Article  CAS  PubMed  Google Scholar 

  • Campos EVR, Pereira AES, Aleksieienko I (2023) Encapsulated plant growth regulators and associative microorganisms: nature-based solutions to mitigate the effects of climate change on plants. Plant Sci. https://doi.org/10.1016/j.plantsci.2023.111688

    Article  PubMed  Google Scholar 

  • Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol 76:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Catty P, Kerchove AD, d’Exaerde Goffeau A (1997) The complete inventory of the yeast Saccharomyces cerevisiae P-type transport ATPases. FEBS Lett 409:325–332

    Article  CAS  PubMed  Google Scholar 

  • Cecílio Filho AB, Feltrim AL, Mendoza Cortez JW, Gonsalves MV, Pavani LC, Barbosa JC (2015) Nitrogen and potassium application by fertigation at different watermelon planting densities. J Soil Sci Plant Nutr 15(4):928–937

    Google Scholar 

  • Chaudhary S, Sindhu SS, Dhanker R, Kumari A (2023) Microbes-mediated sulphur cycling in soil: impact on soil fertility, crop production and environmental sustainability. Microbiol Res 271:127340. https://doi.org/10.1016/j.micres.2023.127340

    Article  CAS  PubMed  Google Scholar 

  • Chauhan PK, Upadhyay SK (2023) Exo-polysaccharide producing bacteria can induce maize plant growth and soil health under saline conditions. Biotechnol Genet Eng Rev. https://doi.org/10.1080/02648725.2022.2163812

    Article  PubMed  Google Scholar 

  • Chen Y, Ye J, Kong Q (2020) Potassium-solubilizing activity of Bacillus aryabhattai SK1-7 and its growth-promoting effect on Populus alba L. Forests 11:1348

    Article  Google Scholar 

  • Chen YH, Yang XZ, Zhuang LI (2020) Efficiency of potassium-solubilizing Paenibacillus mucilaginosus for the growth of apple seedling. J Integ Agric 19(10):2458–2469

    Article  CAS  Google Scholar 

  • Chen Y, Yang H, Shen Z, Ye J (2022) Whole-genome sequencing and potassium-solubilizing mechanism of Bacillus aryabhattai SK1-7. Front Microbiol 12:722379. https://doi.org/10.3389/fmicb.2021.722379

    Article  PubMed  PubMed Central  Google Scholar 

  • Clair SB, Lynch JP (2010) The opening of Pandora’s box: climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil 335:101–115

    Article  Google Scholar 

  • Corratgé C, Zimmermann S, Lambilliotte R, Plassard C, Marmeisse R, Thibaud J-B, Lacombe B, Sentenac H (2007) Molecular and functional characterization of a Na+–K+ transporter from the Trk family in the ectomycorrhizal fungus Hebeloma cylindrosporum. J Biol Chem 282:26057–26066

    Article  PubMed  Google Scholar 

  • Corratgé-Faillie C, Jabnoune M, Zimmermann S, Véry AA, Fizames C, Sentenac H (2010) Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cell Mol Life Sci 67:2511–2532

    Article  PubMed  Google Scholar 

  • Cruz JA, Tubana BS, Fultz LM, Dalen MS, Ham JH (2022) Identification and profiling of silicate-solubilizing bacteria for plant growth-promoting traits and rhizosphere competence. Rhizosphere. https://doi.org/10.1016/j.rhisph.2022.100566

    Article  Google Scholar 

  • Csonka LN, Epstein W (1996) Osmoregulation. In: Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella, 2nd edn. ASM Press, Washington, pp 1210–1223

    Google Scholar 

  • de Almeida HJ, Cruz FJR, Pancelli MA, Flores RA, Vasconcelos RDL, de Mello Prado R (2015) Decreased potassium fertilization in sugarcane ratoons grown under straw in different soils. Austr J Crop Sci 9(7):596

    Google Scholar 

  • DeAngelis KM, Pold G, Topçuoğlu BD, van Diepen LTA, Varney RM, Blanchard JL, Melillo J, Frey SD (2015) Longterm forest soil warming alters microbial communities in temperate forest soils. Front Microbiol 6:104. https://doi.org/10.3389/fmicb.2015.00104

    Article  PubMed  PubMed Central  Google Scholar 

  • De Graef B, Cnudde V, Dick J, De Belie N, Jacobs P, Verstraete W (2005) A sensitivity study for the visualisation of bacterial weathering of concrete and stone with computerised X-ray microtomography. Sci Total Environ 341(1–3):173–183

    Article  PubMed  Google Scholar 

  • Del Buono D (2020) Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Sci Total Environ 751:141763

    Article  PubMed  Google Scholar 

  • Delgado A, Gómez JA (2016) The soil. Physical, chemical and biological properties. Springer, New York, pp 15–26

    Google Scholar 

  • Dhiman S, Dubey RC, Baliyan N, Kumar S, Maheshwari DK (2019) Application of potassium-solubilizing Proteus mirabilis MG738216 inhabiting cattle dung in improving nutrient use efficiency of Foeniculum vulgare Mill. Environ Sustain 2(4):401–409

    Article  CAS  Google Scholar 

  • Dhungana I, Kantar MB, Nguyen NH (2023) Root exudate composition from different plant species influences the growth of rhizosphere bacteria. Rhizosphere 25:100645. https://doi.org/10.1016/j.rhisph.2022.100645

    Article  Google Scholar 

  • Ding Z, Ali EF, Almaroai YA, Eissa MA, Abeed AHA (2021) Effect of potassium solubilizing bacteria and humic acid on faba bean (Vicia faba L.) plants grown on sandy loam soils. J Soil Sci Plant Nutr 21:791–800. https://doi.org/10.1007/s42729-020-00401-z

    Article  CAS  Google Scholar 

  • Domínguez-Ferreras A, Munoz S, Olivares J, Soto MJ, Sanjuan J (2009) Role of potassium uptake systems in Sinorhizobium meliloti osmoadaptation and symbiotic performance. J Bacteriol 191:2133–2143

    Article  PubMed  PubMed Central  Google Scholar 

  • Don NT, Diep CN (2014) Isolation, characterization and identification of phosphate- and potassium-solubilizing bacteria from weathered materials of granite rock mountain, That Son, an Giang province, Vietnam. Am J Life Sci 2(5):282–291

    Google Scholar 

  • Dong X, Lv L, Wang W, Liu Y, Yin C, Xu Q, Yan H, Fu J, Liu X (2019) Differences in distribution of potassium-solubilizing bacteria in forest and plantation soils in Myanmar. Intern J Environ Res Public Health 16(5):700

    Article  CAS  Google Scholar 

  • Duan H, Liu W, Zhou L, Han B, Huo S, El-Sheekh M, Dong H, Li X, Xu T, Elshobary M (2023) Improving saline alkali soil and promoting wheat growth by co-applying potassium solubilizing bacteria and cyanobacteria produced from brewery wastewater. Front Environ Sci 11:1170734. https://doi.org/10.3389/fenvs.2023.1170734

    Article  Google Scholar 

  • Dubus J, Leonhardt N, Latrille C (2023) Multi-cation exchanges involved in cesium and potassium sorption mechanisms on vermiculite and micaceous structures. Environ Sci Pollut Res 30(1):1579–1594. https://doi.org/10.1007/s11356-022-22321-4

    Article  CAS  Google Scholar 

  • Egamberdieva D, Wirth S, Bellingrath-Kimura SD, Mishra JK, Arora N (2019) Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Front Microbiol 10:2791

    Article  PubMed  PubMed Central  Google Scholar 

  • Eguchi T, Yamada D, Hirayama T, Kohata K, Kanno N, Nihei N, Hamamoto S, Kubo K, Saito T, Shinano T (2023) Potassium buffering characteristics and detection of soils with challenges in evaluating radiocesium uptake risk of crops by exchangeable potassium. Arch Agron Soil Sci 69(13):1–18. https://doi.org/10.1080/03650340.2023.2172166

    Article  CAS  Google Scholar 

  • Enebe MC, Babalola OO (2021) Metgenomics assessment of soil fertilization on the chemotaxis and disease suppressive genes abundance in the maize rhizosphere. Genes 12:535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein W (2003) The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol 75:293–320

    Article  CAS  PubMed  Google Scholar 

  • Etesami H, Adl SM (2020) Plant growth-promoting rhizobacteria (PGPR) and their action mechanisms in availability of nutrients to plants. Springer, Singapore, pp 147–203

    Google Scholar 

  • FAI (2007) Fertiliser association of India: Fertiliser Statistics 2006–07, prepared by Chanda TK, Kuldeep Sati, Robertson C, New Delhi

  • Filho MVP, da Silva AB, Florentino LA (2023) Phonolite associated with organic compound and potassium solubilizing bacteria in tomato cultivation. Rev Ceres Viçosa 70(1):133–141. https://doi.org/10.1590/0034-737X202370010015

    Article  CAS  Google Scholar 

  • Fiodor A, Singh S, Pranaw K (2021) The contrivance of plant growth-promoting microbes to mitigate climate change impact in agriculture. Microorganisms 9:1841. https://doi.org/10.3390/microorganisms9091841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Florentino LA, Rezende AV, Miranda CCB, Mesquita AC, Mantovani JR, Bianchini HC (2017) Potassium solubilization in phonolite rock by diazotrophic bacteria. Commun Sci 8:17–23. https://doi.org/10.14295/cs.v8i1.1292

    Article  CAS  Google Scholar 

  • Ford N, Fisher G, Prindle A, Chop D (2021) A two-dimensional model of potassium signaling and oscillatory growth in a biofilm. Bull Math Biol 83:60. https://doi.org/10.1007/s11538-021-00887-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fredrickson JK, Zachara JM (2008) Electron transfer at the microbe–mineral interface: a grand challenge in biogeochemistry. Geobiology 6(3):245–253

    Article  CAS  PubMed  Google Scholar 

  • Gallegos-Cedillo VM, Urrestarazu M, Álvaro JE (2016) Influence of salinity on transport of nitrates and potassium by means of the xylem sap content between roots and shoots in young tomato plants. J Soil Sci Plant Nutr 16(4):991–998

    CAS  Google Scholar 

  • Game BC, Ilhe BM, Pawar VS, Khandagale PP (2020) Effect of Azotobacter, phosphate solubilizing bacteria and potash mobilizing bacteria inoculants on productivity of wheat (Triticum aestivum L.). Intern J Curr Microbiol Appl Sci 9(3):2800–2807

    Article  CAS  Google Scholar 

  • Gandhi R, Prittesh P, Jinal HN, Chavan SM, Paul D, Amaresan N (2022) Evaluation of the effect of potassium solubilizing bacterial strains on the growth of wheat (Triticum aestivum L.). J Plant Nutr. https://doi.org/10.1080/01904167.2022.2074859

    Article  Google Scholar 

  • Garbeva P, van Elsas JD, van Veen JA (2008) Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 302:19–32

    Article  CAS  Google Scholar 

  • Garcia K, Zimmermann SD (2014) The role of mycorrhizal associations in plant potassium nutrition. Front Plant Sci 5:1–9

    Article  CAS  Google Scholar 

  • Garcia K, Delteil A, Conéjéro G, Becquer A, Plassard C, Sentenac H, Zimmermann S (2014) Potassium nutrition of ectomycorrhizal Pinus pinaster: overexpression of the Hebeloma cylindrosporum HcTrk1 transporter affects the translocation of both K+ and phosphorus in the host plant. New Phytol 201:951–960

    Article  CAS  PubMed  Google Scholar 

  • Garcia K, Doidy J, Zimmermann SD, Wipf D, Courty P-E (2016) Take a trip through the plant and fungal transportome of mycorrhiza. Trends Plant Sci 21:937–950

    Article  CAS  PubMed  Google Scholar 

  • Garciadeblás B, Senn ME, Bañuelos MA, Rodríguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34:788–801

    Article  PubMed  Google Scholar 

  • Ghosh PK, Maiti TK, Pramanik K, Ghosh SK, Mitra S, De TK (2018) The role of arsenic resistant Bacillus aryabhattai MCC3374 in promotion of rice seedlings growth and alleviation of arsenic phytotoxicity. Chemosphere 211:407–419

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Mondal S, Banerjee S, Mukherjee A, Bhattacharyya P (2023) Temporal dynamics of potassium release from waste mica as influenced by potassium mobilizing bacteria. J Pure Appl Microbiol. https://doi.org/10.22207/JPAM.17.1.17

    Article  Google Scholar 

  • Glick BR (2020) Introduction to plant growth-promoting bacteria. Beneficial plant–bacterial interactions. Springer, Cham, pp 1–37

    Chapter  Google Scholar 

  • Glick BR, Gamalaro E (2021) Recent developments in the study of plant microbiomes. Microorganisms 9:1533. https://doi.org/10.3390/microorganisms9071533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR, Liu C, Ghosh S, Dumbroff EB (1997) Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biol Biochem 29(8):1233–1239

    Article  CAS  Google Scholar 

  • Goel AK, Sindhu SS, Dadarwal KR (2002) Stimulation of nodulation and plant growth of chickpea (Cicer arietinum) by Pseudomonas spp. antagonistic to fungal pathogens. Biol Fertil Soils 36:391–396

    Article  CAS  Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by Gram-negative bacteria. In: Torriani-Gorini A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, pp 197–203

    Google Scholar 

  • Goldstein AH, Liu ST (1987) Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Biotechnology 5:72–74

    CAS  Google Scholar 

  • Gopalakrishnan S, Humayun P, Kiran BK, Kannan IGK, Vidya MS, Deepthi K, Rupela O (2011) Evaluation of bacteria isolated from rice rhizosphere for biological control of charcoal rot of sorghum caused by Macrophomina phaseolina (Tassi) Goid. World J Microbiol Biotechnol 27(6):1313–1321

    Article  CAS  PubMed  Google Scholar 

  • Gore NS, Navale AM (2017) In vitro screening of rhizospheric Aspergillus niger for potassium solubilization from Maharashtra, India. South Asian J Expt Biol 6:228–233

    Article  Google Scholar 

  • Goswami SP, Maurya BR (2020) Impact of potassium solubilizing bacteria (KSB) and sources of potassium on yield attributes of maize (Zea mays L). J Pharm Phytochem 9(1):1610–1613

    CAS  Google Scholar 

  • Goulding K, Loveland P (1986) The classification and mapping of potassium reserves in soils of England and Wales. J Soil Sci 37:555–565. https://doi.org/10.1111/j.1365-2389.1986.tb00387.x

    Article  CAS  Google Scholar 

  • Gowda K, Ping D, Mani M, Kuehn S (2022) Genomic structure predicts metabolite dynamics in microbial communities. Cell 185(3):530–546

    Article  CAS  PubMed  Google Scholar 

  • Anuradha Goyal RK, Sindhu SS, Godara AK (2020) Microbial biofertilization to improve yield and quality of strawberry. Indian J Ecol 47(1):92–95

    Google Scholar 

  • Grabov A (2007) Plant KT/KUP/HAK potassium transporters: single family-multiple functions. Ann Bot 99:1035–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory PJ, George TS, Paterson E (2022) New methods for new questions about rhizosphere/plant root interactions. Plant Soil. https://doi.org/10.1007/s11104-022-05437-x

    Article  Google Scholar 

  • Greie JC (2011) The KdpFABC complex from Escherichia coli: a chimeric K+ transporter merging ion pumps with ion channels. Eur J Cell Biol 90:705–710

    Article  CAS  PubMed  Google Scholar 

  • Griffiths BS, Philippot L (2013) Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol Rev 37(2):112–129

    Article  CAS  PubMed  Google Scholar 

  • Grzyb A, Wolna-Maruwka A, Niewiadomska A (2020) Environmental factors affecting the mineralization of crop residues. Agronomy 10(12):1951

    Article  CAS  Google Scholar 

  • Guerrero-Galán C, Delteil A, Garcia K, Houdinet G, Conéjéro G, Gaillard I, Sentenac H, Zimmermann SD (2018) Plant potassium nutrition in ectomycorrhizal symbiosis: Properties and roles of the three fungal TOK potassium channels in Hebeloma cylindrosporum. Environ Microbiol 20:1873–1887

    Article  PubMed  Google Scholar 

  • Gundala PB, Chinthala P, Sreenivasulu B (2013) A new facultative alkaliphilic, potassium solubilizing, Bacillus Sp. SVUNM9 isolated from mica cores of Nellore District, Andhra Pradesh, India. Research and reviews. J Microbiol Biotechnol 2(1):1–7

    Google Scholar 

  • Haines A, Kovats RS, Campbell-Lendrum D, Corvalán C (2006) Climate change and human health: impacts, vulnerability and public health. Public Health 120(7):585–596

    Article  CAS  PubMed  Google Scholar 

  • Hakim S, Naqqash T, Nawaz MS, Laraib I, Siddique MJ, Zia R, Mirza MS, Imran A (2021) Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability. Front Sustain Food Syst 5:617157. https://doi.org/10.3389/fsufs.2021.617157

    Article  Google Scholar 

  • Hall JA, Peirson D, Ghosh S, Glick B (1996) Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12–2. Israel J Plant Sci 44(1):37–42

    Article  Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium soluiblizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Biol Sci 1:176–180

    Google Scholar 

  • Han HS, Supanjani Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130–136

    Article  CAS  Google Scholar 

  • Han Y, Ma W, Zhou B, Salah A, Geng M, Cao C, Zhan M, Zhao M (2020) Straw return increases crop grain yields and K-use efficiency under a maize–rice cropping system. Crop J 9:168–180. https://doi.org/10.1016/j.cj.2020.04.003

    Article  Google Scholar 

  • Haro R, Sainz L, Rubio F, Rodríguez-Navarro A (1999) Cloning of two genes encoding potassium transporters in Neurospora crassa and expression of the corresponding cDNAs in Saccharomyces cerevisiae. Mol Microbiol 31:511–520

    Article  CAS  PubMed  Google Scholar 

  • Haro R, Bañuelos MA, Rodríguez-Navarro A (2010) High-affinity sodium uptake in land plants. Plant Cell Physiol 51:68–79

    Article  CAS  PubMed  Google Scholar 

  • Hartmann M, Six J (2023) Soil structure and microbiome functions in agroecosystems. Nat Rev Earth Environ 4:4–18. https://doi.org/10.1038/s43017-022-00366-w

    Article  Google Scholar 

  • Hasan R (2002) Potassium status of soils in India. Better Crops Intern 16(2):3–5

    Google Scholar 

  • Hedrich R (2012) Ion channels in plants. Physiol Rev 92:1777–1811

    Article  CAS  PubMed  Google Scholar 

  • Hoffland E, Kuyper TW, Comans RNJ, Creamer RE (2020) Eco-functionality of organic matter in soils. Plant Soil 455:1–22. https://doi.org/10.1007/s11104-020-04651-9

    Article  CAS  Google Scholar 

  • Hoflich G, Wiehe W, Kühn G (1994) Plant growth stimulation by inoculation with symbiotic and associative rhizosphere microorganisms. Experientia 50(10):897–905

    Article  Google Scholar 

  • Hu X, Chen J, Guo J (2006) Two phosphate-and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotechnol 22(9):983–990

    Article  CAS  Google Scholar 

  • Huang CS, Pedersen BP, Stokes DL (2017) Crystal structure of the potassium-importing KdpFABC membrane complex. Nature 546:681–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang R, McGrath SP, Hirsch PR, Clark IM, Storkey J, Wu L, Zhou J, Liang Y (2019) Plant–microbe networks in soil are weakened by century-long use of inorganic fertilizers. Microbiol Biotechnol 12:1464–1475

    Article  CAS  Google Scholar 

  • Inamdar A, Sangawe V, Adhapure N (2022) Enzymes in rhizosphere engineering, Chapter 14. In: Dubey RC, Kumar P (eds) rhizosphere engineering. Academic Press, Boca Raton, pp 259–272

    Chapter  Google Scholar 

  • Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front Plant Sci 8:1617

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain D, Saheewala H, Sanadhaya S, Joshi A, Bhojiya AA, Verma AK, Mohanty SR (2022) Potassium solubilizing microorganisms as soil health engineers: an insight into molecular mechanism. In: Dubey RC, Kumar P (eds) Rhizosphere engineering. Academic Press, Boca Raton, pp 199–214

    Chapter  Google Scholar 

  • Jansson JK, Hofmockel KS (2018) The soil microbiome—from metagenomics to metaphenomics. Curr Opin Microbiol 43:162–168. https://doi.org/10.1016/J.MIB.2018.01.013

    Article  CAS  PubMed  Google Scholar 

  • Jansson JK, Hofmockel KS (2020) Soil microbiomes and climate change. Nat Rev Microbiol 18:35–46

    Article  CAS  PubMed  Google Scholar 

  • Jantama K, Haupt MJ, Svoronos SA (2008) Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Eschericia coli strain C that produce succinate and malate. Biotechnol Bioeng 99(5):1144–1153

    Article  Google Scholar 

  • Jarratt-Barnham E, Zarrabian D, Oldroyd GED (2022) Symbiotic regulation: how plants seek salvation in starvation. Curr Biol 32(1):R46–R48. https://doi.org/10.1016/j.cub.2021.11.059

    Article  CAS  PubMed  Google Scholar 

  • Jiao X, Takishita Y, Zhou G, Smith DL (2021) Plant associated rhizobacteria for biocontrol and plant growth enhancement. Front Plant Sci. https://doi.org/10.3389/fpls.2021.634796

    Article  PubMed  PubMed Central  Google Scholar 

  • Jini D, Ganga VS, Greeshma MB, Sivashankar R, Thirunavukkarasu A (2023) Sustainable agricultural practices using potassium-solubilizing microorganisms (KSMs) in coastal regions: a critical review on the challenges and opportunities. Environ Develop Sustain. https://doi.org/10.1007/s10668-023-03199-9

    Article  Google Scholar 

  • Johnson R, Vishwakarma K, Hossen MdS, Kumar V, Hasanuzzaman M (2022) Potassium in plants: growth regulation, signaling, and environmental stress tolerance. Plant Physiol Biochem 172:56–69

    Article  CAS  PubMed  Google Scholar 

  • Karmakar K, Das I, Dutta D, Rakshit A (2016) Potential effects of climate change on soil properties: a review. Sci Intern 4(2):51–73. https://doi.org/10.17311/sciintl.2016.51.73

    Article  CAS  Google Scholar 

  • Kasana RC, Panwar NR, Burman U, Pandey CB, Kumar P (2017) Isolation and identification of two potassium solubilizing fungi from arid soil. Int J Curr Microbiol App Sci 6:1752–1762. https://doi.org/10.20546/ijcmas.2017.603.201

    Article  CAS  Google Scholar 

  • Kaul S, Choudhary M, Gupta S, Dhar MK (2021) Engineering host microbiome for crop improvement and sustainable agriculture. Front Microbiol 12:635917

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawasaki A, Dennis PG, Forstner C, Raghavendra AHH, Mathesius U, Richardson AE, Delhaize E, Gilliham M, Watt M, Ryan PR (2021) Manipulating exudate composition from root apices shapes the microbiome throughout the root system. Plant Physiol 2021:1–17. https://doi.org/10.1093/plphys/kiab337

    Article  CAS  Google Scholar 

  • Ke J, Wang B, Yoshikuni Y (2021) Microbiome engineering: synthetic biology of plant-associated microbiomes in sustainable agriculture. Trends Biotechnol 39:244–261

    Article  CAS  PubMed  Google Scholar 

  • Keshavarz Zarjani J, Aliasgharzad N, Oustan S, Emadi M, Ahmadi A (2013) Isolation and characterization of potassium solubilizing bacteria in some Iranian soils. Arch Agron Soil Sci 59(12):1713–1723

    Article  CAS  Google Scholar 

  • Khanwilkar SA, Ramteke JR (1993) Response of applied K in cereals in Maharashtra. Agriculture 5:84–96

    Google Scholar 

  • Khormali F, Rezaei F, Rahimzadeh N, Hosseinifard SJ, Dordipour E (2015) Rhizosphere-induced weathering of minerals in loess-derived soils of Golestan Province, Iran. Geoderma Regional 5:34–43

    Article  Google Scholar 

  • Khuong NQ, Sakpirom J, Oanh TO, Thuc LV, Thu LTM, Xuan DT, Quang LT, Xuan LNT (2023) Isolation and characterization of novel potassium-solubilizing purple nonsulfur bacteria from acidic paddy soils using culture-dependent and culture-independent techniques. Braz J Microbiol. https://doi.org/10.1007/s42770-023-01069-0

    Article  PubMed  Google Scholar 

  • Kloepper JW, Beauchamp CJ (1992) A review of issues related to measuring colonization of plant roots by bacteria. Can J Microbiol 38(12):1219–1232

    Article  Google Scholar 

  • Kong Z, Liu H (2022) Modification of rhizosphere microbial communities: a possible mechanism of plant growth promoting rhizobacteria enhancing plant growth and fitness. Front Plant Sci 13:920813. https://doi.org/10.3389/fpls.2022.920813

    Article  PubMed  PubMed Central  Google Scholar 

  • König P, Averhoff B, Müller V (2021) K+ and its role in virulence of Acinetobacter baumannii. Int J Med Microbiol 311:151516. https://doi.org/10.1016/j.ijmm.2021.151516

    Article  CAS  PubMed  Google Scholar 

  • König P, Averhoff B, Müller V (2024) K+ homeostasis is important for survival of Acinetobacter baumannii ATCC 19606 in the nosocomial environment. Int Microbiol 27(1):303–310. https://doi.org/10.1007/s10123-023-00389-3

    Article  CAS  PubMed  Google Scholar 

  • Koprivova A, Kopriva S (2022) Plant secondary metabolites altering root microbiome composition and function. Curr Opin Plant Biol 67:1022. https://doi.org/10.1016/j.pbi.2022.102227

    Article  CAS  Google Scholar 

  • Kour D, Rana KL, Kaur T, Devi R, Yadav N, Halder SK (2020) Potassium solubilizing and mobilizing microbes: biodiversity, mechanisms of solubilization and biotechnological implication for alleviations of abiotic stress. Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspective. Elsevier, Amsterdam, pp 177–202

    Google Scholar 

  • Koyama H, Kawamura A, Kihara T, Hara T, Takita E, Shibata D (2000) Overexpression of mitochondrial citrate synthase gene in Arabidopsis thaliana improved growth on phosphorus-limited soil. Plant Cell Physiol 41:1030–1037

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Chaudhary T, Diksha Sindhu SS, Chaudhary D, Kumar R (2022) Mycorrhizal fungi: An eco-friendly input for sustenance of soil fertility and plant health. In: Malik DK, Rathi M, Kumar R, Bhatia D (eds) Microbes for humanity and its applications. Daya Publishing House, New Delhi, pp 21–74

    Google Scholar 

  • Kumar S, Diksha Sindhu SS, Kumar R (2022) Biofertilizers: an ecofriendly technology for nutrient recycling and environmental sustainability. Curr Res Microbial Sci 3:100094. https://doi.org/10.1016/j.crmicr.2021.100094

    Article  CAS  Google Scholar 

  • Kumar S, Diksha Sindhu SS, Kumar R, Kumari A, Panwar A (2023) Harnessing phyllosphere microbiome for improving soil fertility, crop production and environmental sustainability. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-023-01397-y

    Article  Google Scholar 

  • Kuzyakov Y, Xu XL (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198(3):656–669

    Article  CAS  PubMed  Google Scholar 

  • Leaungvutiviroj C, Ruangphisarn P, Hansanimitkul P, Shinkawa H, Sasaki K (2010) Development of a new biofertilizer with a high capacity for N2 fixation, phosphate and potassium solubilization and auxin production. Biosci Biotechnol Biochem 74(5):1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Leyval C, Berthelin J (1989) Experimental weathering of mica by mycorrhizal and non-mycorrhizal beech and pine. Ann Des Sci For 46:762s–764s

    Article  Google Scholar 

  • Li X, Chen D, Carrión VJ, Revillini D, Yin S, Dong Y, Zhang T, Wang X, Delgado-Baquerizo M (2023) Acidification suppresses the natural capacity of soil microbiome to fight pathogenic Fusarium infections. Nat Commun 14:5090. https://doi.org/10.1038/s41467-023-40810-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lian B (1998) Study on silicate bacteria dissolve potassium. Guizhou Science and Technology Press, Guiyang, pp 103–108

    Google Scholar 

  • Lian B, Fu PQ, Mo DM, Liu CQ (2002) A comprehensive review of the mechanism of potassium release by silicate bacteria. Acta Mineral Sin 22:179–183

    CAS  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Teng HH (2008) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98. https://doi.org/10.1016/j.gca.2007.10.005

    Article  CAS  Google Scholar 

  • Lian W, Geng A, Wang Y, Liu M, Zhang Y, Wang X, Chen G (2023) The molecular mechanism of potassium absorption, transport, and utilization in rice. Intern J Mol Sci 24:16682. https://doi.org/10.3390/ijms242316682

    Article  CAS  Google Scholar 

  • Lian WH, Mohamad OAA, Dong L, Zhang L-Y, Wang D, Liu L, Han M-X, Li S, Wang S, Antunes A, Fang B-Z, Jiao J-Y, Li W-J (2023) Culturomics- and metagenomics-based insights into the microbial community and function of rhizosphere soils in Sinai desert farming systems. Environ Microbiome 18:4. https://doi.org/10.1186/s40793-023-00463-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin QM, Rao ZH, Sun YX, Yao J, Xing LJ (2002) Identification and practical application of silicate-dissolving bacteria. Agric Sci China 1(1):81–85

    Google Scholar 

  • Liu W, Xu X, Wu X, Yang Q, Luo Y, Christie P (2006) Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environ Geochem Health 28:133–140. https://doi.org/10.1007/s10653-005-9022-0

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421

    Article  CAS  Google Scholar 

  • López-Arredondo DL, Leyva-González MA, Alatorre-Cobos F, Herrera-Estrella L (2013) Biotechnology of nutrient uptake and assimilation in plants. Intern J Dev Biol 57:595–610

    Article  Google Scholar 

  • Macias-Benitez S, Garcia-Martinez AM, Caballero Jimenez P, Gonzalez JM, Tejada Moral T, Parrado Rubio J (2020) Rhizospheric organic acids as biostimulants: monitoring feedbacks on soil microorganisms and biochemical properties. Front Plant Sci 11:633. https://doi.org/10.3389/fpls.2020.00633

    Article  PubMed  PubMed Central  Google Scholar 

  • Madrid R, Gomez MJ, Ramos J, Rodríguez-Navarro A (1998) Ectopic potassium uptake intrk1 trk2 mutants of Saccharomyces cerevisiae correlates with a highly hyperpolarized membrane potential. J Biol Chem 273:14838–14844

    Article  CAS  PubMed  Google Scholar 

  • Maity A, Pal RK, Chandra R, Singh NV (2014) Penicillium pinophilum—a novel microorganism for nutrient management in pomegranate (Punica granatum L.). Sci Hortic 169:111–117

    Article  CAS  Google Scholar 

  • Malinovskaya IM, Kosenko LV, Votselko SK, Podgorskii VS (1990) Role of Bacillus mucilaginosus polysaccharide in degradation of silicate minerals. Mikrobiologiya 59:49–55

    Google Scholar 

  • Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, Abou-Hadid AF, El-Behairy UA, Sorlini C, Cherif A, Zocchi G, Daffonchio D (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS ONE 7:e48479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105(7):1141–1157

    Article  PubMed  PubMed Central  Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27(1):181–187

    Article  Google Scholar 

  • Mazahar S, Umar S (2022) Soil potassium availability and role of microorganisms in influencing potassium availability to plants. In: Iqbal N, Umar S (eds) Role of potassium in abiotic stress. Springer, Singapore

    Google Scholar 

  • Mazzoli R (2021) Current progress in production of building-block organic acids by consolidated bioprocessing of lignocellulose. Fermentation 7:248. https://doi.org/10.3390/fermentation7040248

    Article  CAS  Google Scholar 

  • McCarty NS, Ledesma-Amaro R (2019) Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol 37(2):181–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKinley JB, Vielle C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76(4):727–740

    Article  Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014) Potassium solubilization by bacterial strain in waste mica, Bangladesh. J Bot 43(2):235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347. https://doi.org/10.1016/j.ecoleng.2015.04.065

    Article  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Meena RS (2016) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi

    Book  Google Scholar 

  • Meena VS, Meena SK, Verma JP, Kumar A, Aeron A, Mishra PK, Bisht JK, Pattanayak A, Naveed M, Dotaniya ML (2017) Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: a review. Ecol Eng 107:8–32. https://doi.org/10.1016/j.ecoleng.2017.06.058

    Article  Google Scholar 

  • Meena VS, Zaid A, Maurya BR, Meena SK, Bahadur I, Saha M, Kumar A, Verma R, Wani SH (2018) Evaluation of potassium solubilizing rhizobacteria (KSR): enhancing K-bioavailability and optimizing K-fertilization of maize plants under Indo-Gangetic plains of India. Environ Sci Pollut Res 25(36):36412–36424

    Article  CAS  Google Scholar 

  • Mielk JE (1979) Composition of the Earth’s crust and distribution of the elements. In: Siegel FR (ed) Review of research on modern problems in geochemistry. UNESCO Published, Ceuterick, pp 13–38

    Google Scholar 

  • Mishra A, Singh L (2022) Unboxing the black box—one step forward to understand the soil microbiome: a systematic review. Microb Ecol 1:1–15. https://doi.org/10.1007/S00248-022-01962-5

    Article  Google Scholar 

  • Mueller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23:606–617. https://doi.org/10.1016/j.tim.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  • Muthukumarasamy R, Revathi G, Vadivelu M, Arun K (2017) Isolation of bacterial strains possessing nitrogen-fixation, phosphate and potassium-solubilization and their inoculation effects on sugarcane. Indian J Expert Biol 55:161–170

    CAS  Google Scholar 

  • Muthuraja R, Muthukumar T (2021) Isolation and characterization of potassium solubilizing Aspergillus species isolated from saxum habitats and their effect on maize growth in different soil types. Geomicrobiol J 38(8):672–685. https://doi.org/10.1080/01490451.2021.1928800

    Article  CAS  Google Scholar 

  • Muthuraja R, Muthukumar T (2022) Co-inoculation of halotolerant potassium solubilizing Bacillus licheniformis and Aspergillus violaceofuscus improves tomato growth and potassium uptake in different soil types under salinity. Chemosphere 294:133718. https://doi.org/10.1016/j.chemosphere.2022.133718

    Article  CAS  PubMed  Google Scholar 

  • Nannipieri P, Penton CR, Purahong W, Schloter M, van Elsas JD (2019) Recommendations for soil microbiome analyses. Biol Fertil Soils 55(8):765–766. https://doi.org/10.1007/S00374-019-01409-Z

    Article  Google Scholar 

  • Naseem H, Ahsan M, Shahid MA, Khan N (2018) Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J Basic Microbiol 58(12):1009–1022. https://doi.org/10.1002/jobm.201800309

    Article  CAS  PubMed  Google Scholar 

  • Nath D, Maurya BR, Meena VS (2017) Documentation of five potassium-and phosphorus-solubilizing bacteria for their K and P-solubilization ability from various minerals. Biocatal Agric Biotechnol 10:174–181

    Article  CAS  Google Scholar 

  • Neemisha Kumar A, Sharma P, Kaur A, Sharma S, Jain R (2022) Harnessing rhizobacteria to fulfil inter-linked nutrient dependency on soil and alleviate stresses in plants. J Appl Microbiol 133(5):2694–2716. https://doi.org/10.1111/jam.15649

    Article  CAS  PubMed  Google Scholar 

  • Nguyen LT, Osanai Y, Anderson IC, Bange MP, Tissue DT, Singh BK (2018) Flooding and prolonged drought have differential legacy impacts on soil nitrogen cycling, microbial communities and plant productivity. Plant Soil 431:371–387

    Article  CAS  Google Scholar 

  • Nieves-Cordones M, Martínez V, Benito B, Rubio F (2016) Comparison between Arabidopsis and rice for main pathways of K+ and Na+ uptake by roots. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00992

    Article  PubMed  PubMed Central  Google Scholar 

  • Oborn I, Andrist-Rangel Y, Askekaard M, Grant CA, Watson CA, Edwards AC (2005) Critical aspects of potassium management in agricultural systems. Soil Use Manag 21(1):102–112

    Article  Google Scholar 

  • Olaniyan FT, Alori ET, Adekiya AO, Ayorinde BB, Daramola FY, Osemwegie OO, Babalola OO (2022) The use of soil microbial potassium solubilizers in potassium nutrient availability in soil and its dynamics. Ann Microbiol 72:45. https://doi.org/10.1186/s13213-022-01701-8

    Article  CAS  Google Scholar 

  • Onyewenjo SC, Njoku HO, Ire FS (2021) Isolation and characterization of potassium solubilizing microorganism (KSM) from the rhizosphere and roots of crops indigenous to Ihiagwa-Owerri Imo state Nigeria. Intern J Innov Sci Res Technol 6(10):736–742

    Google Scholar 

  • Orozco-Mosqueda MC, Fadiji AE, Babalola OO, Glick BR, Santoyo G (2022) Rhizobiome engineering: Unveiling complex rhizosphere interactions to enhance plant growth and health. Microbiol Res 263:127137. https://doi.org/10.1016/j.micres.2022.127137

    Article  CAS  PubMed  Google Scholar 

  • Padma SD, Sukumar J (2015) Response of mulberry to inoculation of potash mobilizing bacterial isolate and other bio-inoculants. Glob J Bio Sci Biotechnol 4:50–53

    Google Scholar 

  • Panda A, Das L, Mishra BB (2023) Zinc solubilization and potash mobilization by potent plant growth promoting bacteria isolated from Odisha. Ann Plant Soil Res 25(2):285–296. https://doi.org/10.47815/apsr.2023.10268

    Article  Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3(1):25–31

    Google Scholar 

  • Parmar P, Sindhu SS (2019) The novel and efficient method for isolating potassium solubilizing bacteria from rhizosphere soil. Geomicrobiol J 36(2):130–136

    Article  CAS  Google Scholar 

  • Patel SH, Viradiya MB, Prajapati BJ (2021) Effect of potassium and potassium mobilizing bacteria (KMB) with and without FYM on yield of wheat (Triticum aestivum L.). J Pharmac Phytochem 10(1):1615–1620

    CAS  Google Scholar 

  • Pedersen BP, Stokes DL, Apell HJ (2019) The KdpFABC complex-K+ transport against all odds. Mol Membr Biol 35:21–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettigrew WT (2008) Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant 133:670–681. https://doi.org/10.1111/j.1399-3054.2008.01073.x

    Article  CAS  PubMed  Google Scholar 

  • Phat TD, Diep CN (2021) Influence of two phosphate-potassium solubilizing bacterial species on biomass and nitrate concentration on mustard greens (Brassica juncea (L.) Czernjaew) cultivated on acid sulfate soils. GSC Biol Pharmac Sci 16(03):155–163. https://doi.org/10.30574/gscbps.2021.16.3.0278

    Article  CAS  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  PubMed  Google Scholar 

  • Phour M, Sindhu SS (2020) Amelioration of salinity stress and growth stimulation of mustard (Brassica juncea L.) by salt-tolerant Pseudomonas species. Appl Soil Ecol 149:103518. https://doi.org/10.1016/j.apsoil.2020.103518

    Article  Google Scholar 

  • Phour M, Sindhu SS (2022) Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. Planta 256:85. https://doi.org/10.1007/s00425-022-03997-x

    Article  CAS  PubMed  Google Scholar 

  • Phour M, Sindhu SS (2023) Soil salinity and climate change: microbiome-based strategies for mitigation of salt stress to sustainable agriculture. In: Parray JA (ed) Climate change and microbiome dynamics. Climate change management. Springer, Cham, pp 191–243

    Google Scholar 

  • Phour M, Sehrawat A, Sindhu SS, Glick BR (2020) Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture. Microbiol Res 241:126589

    Article  CAS  PubMed  Google Scholar 

  • Prajapati K, Modi H (2016) Growth promoting effect of potassium solubilizing Enterobacter hormaechei (KSB-8) on cucumber (Cucumis sativus) under hydroponic conditions. Intern J Adv Res Biol Sci 3(5):168–173

    CAS  Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2012) Isolation of two potassium solubilizing fungi from ceramic industry soils. Life Sci Leaflets 5:71–75

    Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2013) Growth promoting effect of potassium solubilizing microorganisms on Abelmoscus esculantus. Int J Agric Sci 3(1):181–188

    Google Scholar 

  • Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 327–331

    Chapter  Google Scholar 

  • Pramanik P, Goswami AJ, Ghosh S, Kalita C (2019) An indigenous strain of potassium-solubilizing bacteria Bacillus pseudomycoides enhanced potassium uptake in tea plant by increasing potassium availability in the mica waste treated soil of northeast India. J Appl Microbiol 126:215–222. https://doi.org/10.1111/jam.14130

    Article  CAS  PubMed  Google Scholar 

  • Pratama D, Anas I (2016) Ability of potassium-solubilizing microbes to solubilize feldspar and their effects on sorghum growth. Malaysian J Soil Sci 20:163–175

    Google Scholar 

  • Qi Y, Dong Y, Peng Q, Xiao S, He Y, Liu X, Sun L, Jia J, Yang Z (2012) Effects of a conversion from grassland to cropland on the different soil organic carbon fractions in Inner Mongolia, China. J Geogl Sci 22(2):315–328

    Article  Google Scholar 

  • Qiu Z, Egidi E, Liu H, Kaur S, Singh BK (2019) New frontiers in agriculture productivity: optimised microbial inoculants and in situ microbiome engineering. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2019.03.010

    Article  PubMed  Google Scholar 

  • Qu Q, Zhang Z, Peijnenburg WJGM, Liu W, Lu T, Hu B et al (2020) Rhizosphere microbiome assembly and its impact on plant growth. J Agric Food Chem 68(18):5024–5038

    Article  CAS  PubMed  Google Scholar 

  • Quiza L, St-Arnaud M, Yergeau E (2015) Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front Plant Sci 6(507):11

    Google Scholar 

  • Qureshi SA, Qureshi RA, Sodha AB, Tipre DR, Dave SR (2017) Bioextraction dynamics of potassium release from feldspar by heterotrophic microorganisms isolated from ceramic and rhizospheric soil. Geomicrobiol J 34:1–4

    Google Scholar 

  • Ragel P, Raddatz N, Leidi EO, Quintero FJ, Pardo JM (2019) Regulation of K+ nutrition in plants. Front Plant Sci 10:281

    Article  PubMed  PubMed Central  Google Scholar 

  • Ragel P, Raddatz N, Leidi EO, Quintero FJ, Pardo JM (2019) Regulation of K+ nutrition in plants. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00281

    Article  PubMed  PubMed Central  Google Scholar 

  • Raji M, Thangavelu M (2021) Isolation and screening of potassium solubilizing bacteria from saxicolous habitat and their impact on tomato growth in different soil types. Arch Microbiol 203:3147–3161. https://doi.org/10.1007/s00203-021-02284-9

    Article  CAS  PubMed  Google Scholar 

  • Rana S, Thakur KS, Bhardwaj RK, Kansal S, Sharma R (2020) Effect of biofertilizers and micronutrients on growth and quality attributes of cabbage (Brassica oleracea var capitata L.). IJCS 8(1):1656–1660.

  • Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 235–253

    Chapter  Google Scholar 

  • Rawat P, Das S, Shankhdhar D et al (2021) Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. J Soil Sci Plant Nutr 21:49–68. https://doi.org/10.1007/s42729-020-00342-7

    Article  CAS  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8(2):34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy PM, James EK, Ladha JK (2002) Nitrogen fixation in rice. In: Leigh GJ (ed) Nitrogen fixation at the Millenium. Elsevier, Amsterdam, pp 421–445

    Chapter  Google Scholar 

  • Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T (2015) Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol 53:403–424

    Article  CAS  PubMed  Google Scholar 

  • Rivetta A, Kuroda T, Slayman C (2011) Anion currents in yeast K+ transporters (TRK) characterize a structural homologue of ligand-gated ion channels. Pflugers Arch Eur J Physiol 462:315–330

    Article  CAS  Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  • Romheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant Soil 335(1–2):155–180

    Article  Google Scholar 

  • Rosado-Porto D, Ratering S, Cardinale M, Maisinger C, Moser G, Deppe MB, Schnell S et al (2022) Elevated atmospheric CO2 modifies mostly the metabolic active rhizosphere soil microbiome in the Giessen FACE experiment. Microbial Ecol 83(3):619–634

    Article  CAS  Google Scholar 

  • Rosa-Magri MM, Avansini SH, Lopes-Assad ML, Tauk-Tornisielo SM, Ceccato-Antonini SR (2012) Release of potassium from rock powder by the yeast Torulaspora globosa. Braz Arch Biol Technol 55:577–582. https://doi.org/10.1590/S1516-89132012000400013

    Article  Google Scholar 

  • Roslan MAM, Zulkifli NN, Sobri ZM, Zuan ATK, Cheak SC, Rahman NAA (2020) Seed biopriming with P-and K-solubilizing Enterobacter hormaechei sp improves the early vegetative growth and the P and K uptake of okra (Abelmoschus esculentus) seedling. PLoS ONE 15(7):0232860

    Article  Google Scholar 

  • Rubio F, Nieves-Cordones M, Alemán F, Martínez V (2008) Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations. Physiol Plant 134:598–608

    Article  CAS  PubMed  Google Scholar 

  • Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383

    Article  CAS  Google Scholar 

  • Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016) Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic plains of India. Biocatal Agric Biotechnol 7:202–209

    Article  Google Scholar 

  • Saiyad SA, Jhala YK, Vyas RV (2015) Comparative efficiency of five potash and phosphate solubilizing bacteria and their key enzymes useful for enhancing and improvement of soil fertility. Intern J Sci Res 2:1–6

    Google Scholar 

  • Sangeeth KP, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J Spices Aromatic Crops 21(2):118–124

    Google Scholar 

  • Santa-María GE, Oliferuk S, Moriconi JI (2018) KT-HAK-KUP transporters in major terrestrial photosynthetic organisms: a twenty years tale. J Plant Physiol 226:77–90

    Article  PubMed  Google Scholar 

  • Sarikhani MR, Oustan S, Ebrahimi M, Aliasgharzad N (2018) Isolation and identification of potassium releasing bacteria in soil and assessment of their ability to release potassium for plants. Eur J Soil Sci 69:1078–1086. https://doi.org/10.1111/ejss.12708

    Article  CAS  Google Scholar 

  • Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23(1):25–41

    Article  CAS  PubMed  Google Scholar 

  • Sattar A, Naveed M, Ali M, Zahir ZA, Nadeem SM, Yaseen M, Meena VS, Farooq M, Singh R, Rahman M, Meena HN (2019) Perspectives of potassium solubilizing microbes in sustainable food production system: a review. Appl Soil Ecol 133:146–159. https://doi.org/10.1016/j.apsoil.2018.09.012

    Article  Google Scholar 

  • Savka MA, Dessaux Y, McSpadden Gardener BB, Mondy S, Kohler PRA, de Bruijn FJ, Rossbach S (2013) The “biased rhizosphere” concept and advances in the omics era to study bacterial competitiveness and persistence in there phytosphere. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 1. Wiley, Hoboken, pp 1145–1161

    Chapter  Google Scholar 

  • Saxena S, Kumar R, Tomar A, Singh J (2020) Isolation, biochemical characterization and potassium solubilzation efficiency of different microbial isolates. Int J Curr Microbiol App Sci 9(6):2667–2680

    Article  CAS  Google Scholar 

  • Schleyer M, Bakker EP (1993) Nucleotide sequence and 39-end deletion studies indicate that the K+ -uptake protein Kup from Escherichia coli is composed of a hydrophobic core linked to a large and partially essential hydrophilic C terminus. J Bacteriol 175:6925–6931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seitz VA, McGivern BB, Daly RA, Chaparro JM, Borton MA, Sheflin AM, Kresovich S, Shields L, Schipanski ME, Wrighton KC, Prenni JE (2022) Variation in root exudate composition influences soil microbiome membership and function. Appl Environ Microbiol. https://doi.org/10.1128/aem.00226-22

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaaban EA, El-Shamma MS, El-Shazly S, El-Gazzar A, Abdel-Hak RE (2012) Efficiency of rock-feldspar combined with silicate dissolving bacteria on yield and fruit quality of Valencia orange fruits in reclaimed soils. J Appl Sci Res 8:4504–4510

    Google Scholar 

  • Shah AM, Khan IM, Shah TI, Bangroo SA, Kirmani NA, Nazir S, Malik AR, Aezum AM, Mir YH, Hilal A, Biswas A (2022) Soil microbiome: a treasure trove for soil health sustainability under changing climate. Land 11:1887. https://doi.org/10.3390/land11111887

    Article  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 203–219

    Chapter  Google Scholar 

  • Sharma R, Sindhu S, Sindhu SS (2018) Suppression of Alternaria blight disease and plant growth promotion of mustard (Brassica juncea L.) by antagonistic rhizosphere bacteria. Appl Soil Ecol 129:145–150

    Article  Google Scholar 

  • Sharma I, Kashyap S, Agarwala N (2023) Biotic stress-induced changes in root exudation confer plant stress tolerance by altering rhizospheric microbial community. Front Plant Sci 14:1132824. https://doi.org/10.3389/fpls.2023.1132824

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharpley AN (1989) Relationship between soil potassium forms and mineralogy. Soil Sci Soc Am J 52:1023–1028

    Article  Google Scholar 

  • Shayanthan A, Ordoñez PAC, Oresnik IJ (2022) The role of synthetic microbial communities (SynCom) in sustainable agriculture. Front Agron 4:896307. https://doi.org/10.3389/fagro.2022.896307

    Article  Google Scholar 

  • Shen YQ, Bonnot F, Imsand EM, Rose FJM, Sjolander K, Klinman JP (2012) Distribution and properties of the genes encoding the biosynthesis of the bacterial cofactor, pyrroloquinoline quinone. Biochemistry 51:2265–2275

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium bearing minerals by a wild type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Huang WY (2002) Mechanism of potassium release from feldspar affected by the strain NBT of silicate bacterium. Acta Pedol Sin 39:863–871

    CAS  Google Scholar 

  • Sheng XF, Huang WY (2002) Study on the conditions of potassium release by strain NBT of silicate bacteria. Scientia Agric Sin 35:673–677

    CAS  Google Scholar 

  • Sheng XF, Xia JJ, Chen J (2003) Mutagenesis of the Bacillus edaphicus strain NBT and its effect on growth of chilli and cotton. Agric Sci China 2:400–412

    Google Scholar 

  • Sheng XF, Zhao F, He H, Qiu G, Chen L (2008) Isolation, characterization of silicate mineral solubilizing Bacillus globisporus Q12 from the surface of weathered feldspar. Can J Microbiol 54:1064–1068. https://doi.org/10.1139/W08-089

    Article  CAS  PubMed  Google Scholar 

  • Shi JW, Lu LX, Shi HM, Ye J-R (2022) Effects of plant growth-promoting rhizobacteria on the growth and soil microbial community of Carya illinoinensis. Curr Microbiol 79:352. https://doi.org/10.1007/s00284-022-03027-9

    Article  CAS  PubMed  Google Scholar 

  • Shricharan S, Mahalakshmi S, Sivabalan S, Joshi JL (2020) Isolation and screening of potassium solubilizing fungi from saline rhizosphere soil of groundnut in coastal areas. In: Proceeding of national conference on Green chemistry and engineering: Towards future technology [GCETFT – 2020] held at Annamalai University, Annamalai Nagar, Tamil Nadu, pp 327–329.

  • Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 221–234

    Chapter  Google Scholar 

  • Silver S (1996) Transport of inorganic cations. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella. 2nd ed.: ASM Press, Washington, DC, pp 1091–1102.

  • Sindhu SS, Dadarwal KR (1994) Biosynthesis of exopolysaccharides and its role during nodule development in Rhizobium–legume symbiosis. In: Vashampayan A, Prasad AB (eds) Biology and application of nitrogen-fixing organisms-problems and prospectus. Scientific Publishers, Jodhpur, pp 189–240

    Google Scholar 

  • Sindhu SS, Sharma R (2020) Plant growth promoting rhizobacteria (PGPR): asustainable approach for managing soil fertility and crop productivity. In: Malik DK, Rathi M, Kumar R, Bhatia M (eds) Microbes for humankind and applications. Astral International, New Delhi, pp 97–130

    Google Scholar 

  • Sindhu D, Sindhu S (2016) Computational programming for product designing in synthetic biology. Intern J Innov Res Sci Eng Technol 5(5):8095–8103

    Google Scholar 

  • Sindhu SS, Gupta SK, Dadarwal KR (1999) Antagonistic effect of Pseudomonas spp. on pathogenic fungi and enhancement of growth of green gram (Vigna radiata). Biol Fertil Soils 29:62–68

    Article  CAS  Google Scholar 

  • Sindhu SS, Mor S, Dadarwal KR (1999) Cell surface polysaccharides of Rhizobium and nodule development on legume roots: Recent advances. In: Gakhar SK, Mishra SN (eds) Recent trends in developmental biology. Himalaya Publishing House, New Delhi, pp 204–240

    Google Scholar 

  • Sindhu RK, Goyal A, Das J, Neha Choden S, Kumar P (2021) Immunomodulatory potential of polysaccharides derived from plants and microbes: a narrative review. Carbohydr Polym Technol Appl 2:100044. https://doi.org/10.1016/j.carpta.2021.100044

    Article  CAS  Google Scholar 

  • Sindhu SS, Sehrawat A, Glick BR (2022) The involvement of organic acids in soil fertility, plant health and environment sustainability. Arch Microbiol 204:720. https://doi.org/10.1007/s00203-022-03321-x

    Article  CAS  PubMed  Google Scholar 

  • Sindhu SS, Sehrawat A, Phour M, Kumar R (2022) Nutrient acquisition and soil fertility: contribution of rhizosphere microbiomes in sustainable agriculture. In: Arora NK, Bouizgarne B (eds) Microbial biotechnology for sustainable agriculture Volume 1. Microorganisms for sustainability, vol 33. Springer, Singapore, pp 1–41

    Google Scholar 

  • Singh G, Biswas DR, Marwah TS (2010) Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.). J Plant Nutr 33:1236–1251

    Article  CAS  Google Scholar 

  • Singh VK, Dwivedi BS, Singh Y, Singh SK, Mishra RP, Shukla AK, Rathore SS, Shekhawat K, Majumdar K, Jat ML (2018) Effect of tillage and crop establishment, residue management and K fertilization on yield, K use efficiency and apparent K balance under rice–maize system in north-western India. Field Crop Res 224:1–12. https://doi.org/10.1016/j.fcr.2018.04.012

    Article  Google Scholar 

  • Singh A, Singh B, Chinna GS, Chahal HS, Devi R (2022) Revitalization of potassium solubilizing microbes in food production system: AN overview. Agric Rev. 1:1. https://doi.org/10.18805/ag.R-2196

    Article  Google Scholar 

  • Sjøgaard KS, Valdemarsen TB, Treusch AH (2018) Responses of an agricultural soil microbiome to flooding with seawater after managed coastal realignment. Microorganisms 6(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  • Slathia D, Khan FU, Masoodi NH, Khan FA, Wani JA, Iqbal U (2019) Effect of different combinations of NPK and biofertilizers on Zinnia (Zinnia elegans J). Curr J Appl Sci Technol 34(6):1–7. https://doi.org/10.9734/cjast/2019/v34i630157

    Article  CAS  Google Scholar 

  • Sleator RD, Hill C (2002) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26:49–71

    Article  CAS  PubMed  Google Scholar 

  • Song SK, Huang PM (1988) Dynamics of potassium release from potassium-bearing minerals as influenced by oxalic and citric acids. Soil Sci Soc Am J 52:383–390

    Article  CAS  Google Scholar 

  • Song M, Pedruzzi I, Peng Y, Li P, Liu J, Yu J (2015) K-extraction from muscovite by the isolated fungi. Geomicrobiol J 32:771–779. https://doi.org/10.1080/01490451.2014.985409

    Article  CAS  Google Scholar 

  • Sood Y, Singhmar R, Singh V, Malik DK (2023) Isolation and characterization of potential potassium solubilizing bacteria with various plant growth promoting traits. Biosci Biotech Res Asia. https://doi.org/10.13005/bbra/3070

    Article  Google Scholar 

  • Soumare A, Sarr D, Diedhiou AG (2022) Potassium sources, microorganisms, and plant nutrition—challenges and future research directions: a review. Pedosphere 33(1):105–115. https://doi.org/10.1016/j.pedsph.2022.06.025

    Article  CAS  Google Scholar 

  • Sparks DL (1987) Potassium dynamics in soils. Adv Soil Sci 6:1–63

    Article  CAS  Google Scholar 

  • Sparks DL, Huang PM (1985) Physical chemistry of soil potassium. In: Munson RD (ed) Potassium in agriculture. ASA CSSA and SSSA, Madison, pp 201–265

    Google Scholar 

  • Stautz J, Hellmich Y, Fuss MF, Silberberg JM, Devlin JR, Stockbridge RB, Hänelt I (2021) Molecular mechanisms for bacterial potassium homeostasis. J Mol Biol 433(16):166968. https://doi.org/10.1016/j.jmb.2021.166968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stumpe SA, Schlosser M, Schleyer Bakker EP (1996) K+ circulation across the prokaryoticcell membrane: K+-uptake systems. In: Konings WN, Kaback HR, Lolkema JS (eds) Handbook of biological physics, vol 2. Elsevier Science BV, The Netherlands, Amsterdam, pp 474–499

    Google Scholar 

  • Su L, Feng H, Mo X, Sun J, Qiu P, Liu Y, Zhang R, Kuramae EE, Shen B, Shen Q (2022) Potassium phosphite enhanced the suppressive capacity of the soil microbiome against the tomato pathogen Ralstonia solanacearum. Biol Fertil Soils. https://doi.org/10.1007/s00374-022-01634-z

    Article  Google Scholar 

  • Suman B, Triveni S, Latha PC, Srilatha M, Durga Rani ChV (2018) Characterization and screening of salinity tolerant potassium solubilizing bacteria. J Res PJTSAU 46:31–40

    Google Scholar 

  • Sun F, Ou Q, Wang N, Guo Z, Ou Y, Li N, Peng C (2020) Isolation and identification of potassium-solubilizing bacteria from Mikania micrantha rhizospheric soil and their effect on M. micrantha plants. Global Ecol Conservation 23:e01141. https://doi.org/10.1016/j.gecco.2020.e01141

    Article  Google Scholar 

  • Supanjani HH, Jung JS, Lee KD (2006) Rock phosphate-potassium and rock-solubilizing bacteria as alternative, sustainable fertilizers. Agron Sustain Dev 26(4):233–240

    Article  CAS  Google Scholar 

  • Sweet ME, Larsen C, Zhan X, Stokes DL (2021) Structural basis for potassium transport in prokaryotes by KdpFABC. Biophys Comput Biol 118(29):e2105195118. https://doi.org/10.1073/pnas.210519511

    Article  CAS  Google Scholar 

  • Sze H, Chanroj S (2018) Plant endomembrane dynamics: Studies of K+/H+ antiporters provide insights on the effects of pH and ion homeostasis. Plant Physiol 177:875–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilman D, Cassman KC, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • Tokonami Y, Funao T, Oga T, Nishida M, Takahashi T, Asakawa S (2022) Estimation of turnover time of microbial biomass potassium in paddy field soil. Soil Sci Plant Nutr 68(2):275–283. https://doi.org/10.1080/00380768.2022.2045553

    Article  CAS  Google Scholar 

  • Tsoi R, Dai Z, You L (2019) Emerging strategies for engineering microbial communities. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2019.03.011

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsolakidou MD, Stringlis IA, Fanega-Sleziak N, Papageorgiou S, Tsalakou A, Pantelides IS (2019) Rhizosphere-enriched microbes as a pool to design synthetic communities for reproducible beneficial outputs. FEMS Microbiol Ecol 95:138

    Article  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73(9):3019–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Freyklett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387

    Article  CAS  PubMed  Google Scholar 

  • Vandenberghe LPS, Soccol CR, Pandey A, Lebeault JM (1999) Microbial production of citric acid. Braz Arch Biol Technol 42:263–276

    Article  CAS  Google Scholar 

  • Verma SK, Singh SB, Prasad SK, Meena RN, Meena RS (2015) Influence of irrigation regimes and weed management practices on water use and nutrient uptake in wheat (Triticum aestivum L. Emend. Fiori and Paol). Bangladesh J Bot 44(3):437–442

    Article  Google Scholar 

  • Vessey KJ (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 25:557–586

    Google Scholar 

  • Vyas P, Gulati A (2009) Organic acid production in vitro and palnt growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9:174. https://doi.org/10.1186/1471-2180-9-174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wu WH (2013) Potassium transport and signaling in higher plants. Annu Rev Plant Biol 64:451–476

    Article  CAS  PubMed  Google Scholar 

  • Wasai S, Minamisawa K (2018) Plant-associated microbes: from rhizobia to plant microbiomes. Microbes Environ 33:1–3. https://doi.org/10.1264/jsme2.ME3301rh

    Article  PubMed  PubMed Central  Google Scholar 

  • Welch SA, Vandevivere P (2009) Effect of microbial and other naturally occurring polymers on mineral dissolution. Geomicrobiol J 12:227–238

    Article  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Wu X, Zhao Z, Zhao Z, Zhang Y, Li M, Yu Q (2023) Analysis of the potassium-solubilizing Priestia megaterium strain NK851 and its potassium feldspar-binding proteins. Intern J Mol Sci 24:14226. https://doi.org/10.3390/ijms241814226

    Article  CAS  Google Scholar 

  • Xiao Z, Liu X, Tang J, Hu S, Jiang P, Li W, Xu L (2012) Characterization and potassium solubilizing ability of Bacillus circulans Z1–3. Adv Sci Lett 10:173–176

    Article  Google Scholar 

  • Xiao Y, Wang X, Chen W, Huang Q (2017) Isolation and identification of three potassium-solubilizing bacteria from rape rhizospheric soil and their effects on ryegrass. Geomicrobiol J 34(10):873–880

    Article  CAS  Google Scholar 

  • Xie JC (1998) Present situation and prospects for the world’s fertilizer use. Plant Nutr Fertil Sci 4:321–330

    Google Scholar 

  • Xie B, Chen Y, Cheng C, Ma R, Zhao D, Li Z, Li Y, An X, Yang X (2022) Long-term soil management practices influence the rhizosphere microbial community structure and bacterial function of hilly apple orchard soil. Appl Soil Ecol 180:104627. https://doi.org/10.1016/j.apsoil.2022.104627

    Article  Google Scholar 

  • Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 187–201

    Chapter  Google Scholar 

  • Yadav V, Kumar M, Deep AK, Kumar H, Sharma R, Tripathi T, Tuteja N, Saxena AK, Johri AK (2010) A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J Biol Chem 285:26532–26544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaghoubi KM, Pirdashti H, Rahimian H, Nematzadeh G, Ghajar SM (2018) Potassium solubilizing bacteria (KSB) isolated from rice paddy soil: from isolation, identification to K use efficiency. Symbiosis 76:13–23. https://doi.org/10.1007/s13199-017-0533-0

    Article  CAS  Google Scholar 

  • Yamanashi T, Uchiyama T, Saito S, Higashi T, Ikeda H, Kikunaga H, Yamagami M, Ishimaru Y, Uozumi N (2022) Potassium transporter KUP9 participates in K+ distribution in roots and leaves under low K+ stress. Stress Biol 2:52. https://doi.org/10.1007/s44154-022-00074-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita K, Nishida M, Akita K, Ito T, Saito M, Honjo H, Shinohara M, Asakawa S (2022) Pool size of microbial biomass potassium in various farmland soils. Soil Sci Plant Nutr 68(3):400–408. https://doi.org/10.1080/00380768.2022.20577

    Article  CAS  Google Scholar 

  • Yang H, Lu L, Chen Y, Yea J (2023) Transcriptomic analysis reveals the response of the bacterium Priestia aryabhattai SK1-7 to interactions and dissolution with potassium feldspar. Appl Environ Microbiol. https://doi.org/10.1128/aem.02034-22

    Article  PubMed  PubMed Central  Google Scholar 

  • Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 163–170

  • Yi F, Liu H, Quan Q (2021) Impact of climate change on chemical inputs: Evidence of pesticide usage from China.

  • Yin H, Zhao W, Li T, Cheng X, Liu Q (2018) Balancing straw returning and chemical fertilizers in China: role of straw nutrient resources. Renew Sustain Energy Rev 81:2695–2702. https://doi.org/10.1016/j.rser.2017.06.076

    Article  CAS  Google Scholar 

  • Youssef GH, Seddik WM, Osman MA (2010) Efficiency of natural minerals in presence of different nitrogen forms and potassium dissolving bacteria on peanut and sesame yields. J Am Sci 6(11):647–660

    Google Scholar 

  • Yun P, Xu L, Wang S-S, Shabala L, Shabala S, Zhang W-Y (2018) Piriformospora indica improves salinity stress tolerance in Zea mays L. plants by regulating Na+ and K+ loading in root and allocating K+ in shoot. Plant Growth Regul 86:1–9

    Article  Google Scholar 

  • Zakaria AAB (2009) Growth optimization of potassium solubilizing bacteria isolated from biofertilizer. Fac Chem, Natural Resources Eng Univ, Malaysia Pahang, pp 40

  • Zeng X, Liu X, Tang J, Hu S, Jiang P, Li W, Xu L (2012) Characterization and potassium-solubilizing ability of Bacillus circulans Z 1–3. Adv Sci Lett 10(1):173–176

    Article  CAS  Google Scholar 

  • Zhai YM, Hou MM, Nie SA (2018) Variance of microbial composition and structure and relation with soil properties in rhizospheric and non-rhizospheric soil of a flooded paddy. Paddy Water Environ 16(1):163–172

    Article  Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Article  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Pare PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant–Microbe Interact 21:737–744

    Article  PubMed  Google Scholar 

  • Zhang J, Cook J, Nearing JT, Zhang J, Raudonis R, Glick BR, Langille MGI, Cheng Z (2021) Harnessing the plant microbiome to promote the growth of agricultural crops. Microbiol Res 245:26690

    Article  Google Scholar 

  • Zhang Z, Liu D, Wu M, Xia Y, Zhang F, Fan X (2021) Long-term straw returning improve soil K balance and potassium supplying ability under rice and wheat cultivation. Sci Rep 11(1):22260. https://doi.org/10.1038/s41598-021-01594-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JW, Mohammed N, Cote P, Dalpe S, Dufresne G (2013) Greenhouse trials on biochar as the growth media for cucumber, tomato and pepper hydroponic vegetable production. Alberta Agriculture Report, Alberta, Canada

  • Zhao F, Sheng X, Huang Z, He L (2008) Isolation of mineral potassium-solubilizing bacterial strains from agricultural soils in Shandong Province. Biodivers Sci 16:593–600

    Article  CAS  Google Scholar 

  • Zhao S-X, Deng Q-S, Jiang C-Y, Wu Q-S, Xue Y-B, Li G-L, Zhao J-J, Zhou N (2023) Inoculation with potassium solubilizing bacteria and its effect on the medicinal characteristics of Paris polyphylla var yunnanensis. Agriculture 13(1):21. https://doi.org/10.3390/agriculture13010021

    Article  CAS  Google Scholar 

  • Zheng BX, Ibrahim M, Zhang DP, Bi QF, Li HZ, Zhou GW, Ding K, Penuelas J, Zhu YG, Yang XR (2018) Identification and characterization of inorganic phosphate solubilizing bacteria from agricultural fields with a rapid isolation method. AMB Express 8:47. https://doi.org/10.1186/s13568-018-0575-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Wang C, Luo Y (2018) Response of soil microbial communities to altered precipitation: a global synthesis. Glob Ecol Biogeogr 27:1121–1136

    Article  Google Scholar 

  • Zörb C, Senbayram M, Peiter E (2014) Potassium in agriculture-status and perspectives. J Plant Physiol 171:656–669. https://doi.org/10.1016/j.jplph.2013.08.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the faculty members of Microbiology department for their critical reading of the manuscript and providing valuable comments and inputs to improve the manuscript.

Funding

Being a review article, no funding was involved in compilation of the information in this review chapter.

Author information

Authors and Affiliations

Authors

Contributions

S.S.S. and B.R.G. conceived and designed the review. R.S. and S.S.S. contributed in writing and original draft preparation. R.S. designed the figures. B.R.G. performed the editing. All the authors have reviewed the manuscript and approved the submitted/published version of the manuscript.

Corresponding author

Correspondence to Satyavir S. Sindhu.

Ethics declarations

Competing Interests

Authors do not have any financial or non-financial interests that are directly or indirectly related to the work submitted for publication. Preparation of this review article does not involve any financial funding and research work. The authors declare that they have no conflict of interests.

Ethics Approval and Consent to Participate

The work submitted does not include any experiment related to animals.

Additional information

Handling Editor: Pramod Kumar Nagar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Sindhu, S.S. & Glick, B.R. Potassium Solubilizing Microorganisms as Potential Biofertilizer: A Sustainable Climate-Resilient Approach to Improve Soil Fertility and Crop Production in Agriculture. J Plant Growth Regul (2024). https://doi.org/10.1007/s00344-024-11297-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00344-024-11297-9

Keywords

Navigation