Skip to main content

Advertisement

Log in

Potassium phosphite enhanced the suppressive capacity of the soil microbiome against the tomato pathogen Ralstonia solanacearum

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

High-throughput sequencing, culture-dependent workflows, and microbiome transfer experiments reveal whether potassium phosphite (KP), an environmentally acceptable agricultural chemical, could specifically enrich the antagonistic bacterial community that inhibited the growth of the pathogen Ralstonia solanacearum. The application of KP enriched the potential antagonistic bacteria Paenibacillus and Streptomyces in soil, but depleted most dominant genera belonging to gram negative bacteria, such as Pseudomonas, Massilia, and Flavobacterium on day 7. Moreover, the KP-modulated soil microbiome suppressed R. solanacearum growth in soil. The predicted functions related to the synthesis of antagonistic substances, such as streptomycin, and the predicted functions related to tellurite resistance and nickel transport system were significantly enriched, but the synthesis of lipopolysaccharide (distinct component lipopolysaccharide in gram negative bacteria) were significantly depleted in the KP-treated soils. In addition, the copy numbers of specific sequences for Streptomyces coelicoflavus and Paenibacillus favisporus were significantly increased in the soil amended with KP, inhibited the growth of R. solanacearum, and had a higher tolerance of KP than R. solanacearum. Our study linked the application of fertilizers to the enrichment of antagonistic bacteria, which could support future work that aims to precisely regulate the soil microbiome to protect the host from infection by soil-borne pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The raw sequences were submitted to the NCBI Sequence Read Archive (SRA) under BioProject accession PRJNA577427. The whole-genome shotgun project has been deposited in GenBank under the accession numbers PRJNA579492 (strain Y7) and PRJNA577208 (strain F13).

Code availability

Not applicable.

References

  • Albrigo L (1999) Effects of foliar applications of urea or nutriphite on flowering and yields of Valencia orange trees. Proceedings of the Florida State Horticultural Society. Florida State Horticultural Society, Florida State, pp 1–4

  • Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP, Burmølle M, Herschend J, Bakker PA, Pieterse CM (2018) Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J 12:1496–1507

    Article  CAS  Google Scholar 

  • Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH (2008) Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci 105:10583–10588. https://doi.org/10.1073/pnas.0709942105

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa BHG, de Resende MLV, Monteiro ACA, Ribeiro Júnior PM, Botelho DMdS, Silva BMd (2018) Potassium phosphites in the protection of common bean plants against anthracnose and biochemical defence responses. J Phytopathol 166:95–102

    Article  CAS  Google Scholar 

  • de Pedro Jové R, Sebastià P, Valls M (2021) Identification of type III secretion inhibitors for plant disease management. Methods Mol Biol 2213:39–48. https://doi.org/10.1007/978-1-0716-0954-5_4

    Article  CAS  PubMed  Google Scholar 

  • Dempsey JJ, Wilson I, Spencer-Phillips PTN, Arnold D (2018) Suppression of the in vitro growth and development of Microdochium nivale by phosphite. Plant Pathol 67:1296–1306

    Article  CAS  Google Scholar 

  • Desta M, Wang W, Zhang L, Xu P, Tang H (2019) Isolation, characterization, and genomic analysis of Pseudomonas sp. strain SMT-1, an efficient fluorene-degrading bacterium. Evol Bioinform 15:1176934319843518

    Article  Google Scholar 

  • Dundore-Arias JP, Felice L, Dill-Macky R, Kinkel LL (2019) Carbon amendments induce shifts in nutrient use, inhibitory, and resistance phenotypes among soilborne Streptomyces. Front Microbiol 10:498. https://doi.org/10.3389/fmicb.2019.00498

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996

    Article  CAS  Google Scholar 

  • Felipini RB, Boneti JI, Katsurayama Y, Neto ACR, Veleirinho B, Maraschin M, Di Piero RM (2016) Apple scab control and activation of plant defence responses using potassium phosphite and chitosan. Eur J Plant Pathol 145:929–939. https://doi.org/10.1007/s10658-016-0881-2

    Article  CAS  Google Scholar 

  • Figueroa IA, Coates JD (2017) Microbial phosphite oxidation and its potential role in the global phosphorus and carbon cycles. Adv Appl Microbiol 98:93–117. https://doi.org/10.1016/bs.aambs.2016.09.004

    Article  CAS  PubMed  Google Scholar 

  • Garbelotto M, Schmidt D, Harnik T (2007) Phosphite injections and bark application of phosphite+ Pentrabark™ control sudden oak death in coast live oak. Arboric Urban for 33:309

    Article  Google Scholar 

  • Greig D, Goddard M (2015) Ecology: tribal warfare maintains microbial diversity. Curr Biol 25:R618–R620. https://doi.org/10.1016/j.cub.2015.05.044

    Article  CAS  PubMed  Google Scholar 

  • Han L, Liu Y, Fang K, Zhang X, Liu T, Wang F, Wang X (2020) Azoxystrobin dissipation and its effect on soil microbial community structure and function in the presence of chlorothalonil, chlortetracycline and ciprofloxacin. Environ Pollut 257:113578

    Article  CAS  Google Scholar 

  • Howard MM, Bell TH, Kao-Kniffin J (2017) Soil microbiome transfer method affects microbiome composition, including dominant microorganisms, in a novel environment. FEMS Microbiol Lett 364:fnx092. https://doi.org/10.1093/femsle/fnx092

    Article  CAS  PubMed Central  Google Scholar 

  • Johnsson RE (2016) Synthesis and evaluation of mannitol-based inhibitors for lipopolysaccharide biosynthesis. Int J Med Chem 2016:3475235–3475235. https://doi.org/10.1155/2016/3475235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapoor G, Saigal S, Elongavan A (2017) Action and resistance mechanisms of antibiotics: a guide for clinicians. J Anaesthesiol Clin Pharmacol 33:300–305

    Article  CAS  Google Scholar 

  • Kostov O, Van Cleemput O (2001) Microbial activity of Cu contaminated soils and effect of lime and compost on soil resiliency. Compost Sci Util 9:336–351

    Article  Google Scholar 

  • Lewis JA (1977) Effect of plant residues on chlamydospore germination of Fusarium solani f. sp. phaseoli and on Fusarium Root Rot of Beans. Phytopathology 77:925–929

    Article  Google Scholar 

  • Li X, Jousset A, de Boer W, Carrión VJ, Zhang T, Wang X, Kuramae EE (2019) Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME J 13:738–751. https://doi.org/10.1038/s41396-018-0300-0

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Cai M, Hu C, Sun X, Cheng Q, Jia W, Yang T, Nie M, Zhao X (2019) Selenium (Se) reduces Sclerotinia stem rot disease incidence of oilseed rape by increasing plant Se concentration and shifting soil microbial community and functional profiles. Environ Pollut 254:113051. https://doi.org/10.1016/j.envpol.2019.113051

    Article  CAS  PubMed  Google Scholar 

  • Meena RS, Kumar S, Datta R, Lal R, Vijayakumar V, Brtnicky M, Sharma MP, Yadav GS, Jhariya MK, Jangir CK (2020) Impact of agrochemicals on soil microbiota and management: a review. Land 9:34

    Article  Google Scholar 

  • Metcalf WW, Wolfe RS (1998) Molecular genetic analysis of phosphite and hypophosphite oxidation by Pseudomonas stutzeri WM88. J Bacteriol 180:5547–5558

    Article  CAS  Google Scholar 

  • Mitter B, Brader G, Pfaffenbichler N, Sessitsch A (2019) Next generation microbiome applications for crop production-limitations and the need of knowledge-based solutions. Curr Opin Microbiol 49:59–65

    Article  CAS  Google Scholar 

  • Mofidnakhaei M, Abdossi V, Dehestani A, Pirdashti H, Babaeizad V (2016) Potassium phosphite affects growth, antioxidant enzymes activity and alleviates disease damage in cucumber plants inoculated with Pythium ultimum. Arch Phytopathol 49:207–221. https://doi.org/10.1080/03235408.2016.1180924

    Article  CAS  Google Scholar 

  • Niere JO, Deangelis G, Grant BR (1994) The effect of phosphonate on the acid-soluble phosphorus components in the genus Phytophthora. Microbiology 140:1661–1670

    Article  CAS  Google Scholar 

  • Norman DJ, Chen J, Yuen JMF, Mangravita-Novo A, Byrne D, Walsh L (2006) Control of Bacterial Wilt of Geranium with Phosphorous Acid. Plant Dis 90:798–802

    Article  CAS  Google Scholar 

  • Pontieri P, Hartings H, Di Salvo M, Massardo DR, De Stefano M, Pizzolante G, Romano R, Troisi J, Del Giudice A, Alifano P, Del Giudice L (2018) Mitochondrial ribosomal proteins involved in tellurite resistance in yeast Saccharomyces cerevisiae. Sci Rep 8:12022. https://doi.org/10.1038/s41598-018-30479-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, Billault A, Brottier P, Camus JC, Cattolico L (2002) Genome sequence of the plant pathogen Ralstonia solanacearum. Nature Nature 415:497–502

    Article  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537

    Article  CAS  Google Scholar 

  • Sederholm MR, Schmitz BW, Barberán A, Pepper IL (2018) Effects of metam sodium fumigation on the abundance, activity, and diversity of soil bacterial communities. Appl Soil Ecol 124:27–33

    Article  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  Google Scholar 

  • Singh N, Phukan T, Sharma PL, Kabyashree K, Barman A, Kumar R, Sonti RV, Genin S, Ray SK (2018) An innovative root inoculation method to study Ralstonia solanacearum pathogenicity in tomato seedlings. Phytopathology 108:436–442. https://doi.org/10.1094/phyto-08-17-0291-r

    Article  CAS  PubMed  Google Scholar 

  • van der Voort M, Kempenaar M, van Driel M, Raaijmakers JM, Mendes R (2016) Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression. Ecol Lett 19:375–382. https://doi.org/10.1111/ele.12567

    Article  PubMed  Google Scholar 

  • Wang F, Zhou T, Zhu L, Wang X, Wang J, Wang J, Du Z, Li B (2019) Effects of successive metalaxyl application on soil microorganisms and the residue dynamics. Ecol Indic 103:194–201. https://doi.org/10.1016/j.ecolind.2019.04.018

    Article  CAS  Google Scholar 

  • Wei Z, Huang J, Yang T, Jousset A, Xu Y, Shen Q, Friman V-P (2017) Seasonal variation in the biocontrol efficiency of bacterial wilt is driven by temperature-mediated changes in bacterial competitive interactions. J Appl Ecol 54:1440–1448

    Article  CAS  Google Scholar 

  • Wright ES, Vetsigian KH (2016) Inhibitory interactions promote frequent bistability among competing bacteria. Nat Commun 7:11274. https://doi.org/10.1038/ncomms11274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadeta K, Thomma B (2013) The xylem as battleground for plant hosts and vascular wilt pathogens. FRONT PLANT SCI 4:97. https://doi.org/10.3389/fpls.2013.00097

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Zhao J, Wen T, Zhao M, Li R, Goossens P, Huang Q, Bai Y, Vivanco JM, Kowalchuk GA, Berendsen RL, Shen Q (2018) Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome 6:156. https://doi.org/10.1186/s40168-018-0537-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Liu X, Jiang Q, Shen G, Ding W (2017) Legacy effects of continuous chloropicrin-fumigation for 3-years on soil microbial community composition and metabolic activity. AMB Express 7:178. https://doi.org/10.1186/s13568-017-0475-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Chao Zhou and Ms. Zhenghua Wu for technical assistance. Publication number 7417 of the Netherlands Institute of Ecology (NIOO-KNAW).

Funding

This work was supported by the Chinese Natural Science Fund Program (41571242).

Author information

Authors and Affiliations

Authors

Contributions

Lv Su composed the main text, conceived the project, and performed almost all experiments except for the following. Haichao Feng analyzed the data of high throughput sequencing and provided suggestions of ecology concepts. Xingxia Mo and Juan Sun isolated strains from soils. Pengfei Qiu extracted soil DNA. Yunpeng Liu, Eiko E. Kuramae, and Ruifu Zhang provided suggestions for the manuscript. Biao Shen and Qirong Shen organized and supervised the project, respectively.

Corresponding author

Correspondence to Biao Shen.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 991 kb)

Supplementary file2 (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, L., Feng, H., Mo, X. et al. Potassium phosphite enhanced the suppressive capacity of the soil microbiome against the tomato pathogen Ralstonia solanacearum. Biol Fertil Soils 58, 553–563 (2022). https://doi.org/10.1007/s00374-022-01634-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-022-01634-z

Keywords

Navigation