Skip to main content
Log in

Piriformospora indica improves salinity stress tolerance in Zea mays L. plants by regulating Na+ and K+ loading in root and allocating K+ in shoot

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Piriformospora indica is known as a fungus that can easily colonize a wide range of plants and enhance host’s growth and tolerance to abiotic stresses, including salinity. The mechanistic basis behind this phenomenon remains poorly understood. This work was aimed to fill in this gap and reveal mechanisms enhancing salinity tolerance in maize roots colonised by P. indica. A range of agronomic and physiological characteristics were compared between inoculated and non-inoculated maize plants under 0/100/200 mM NaCl conditions. The impact of P. indica inoculation or root’s cytosolic K+ retention ability were also assessed using micro-electrode ion flux estimation technique. The results showed that inoculated plants had higher biomass, higher stomatal conductance, lower K+ efflux from roots and higher potassium content in shoots than non-inoculated plants under salt stress. Collectively, the results indicated that the beneficial effects of inoculation on plant performance under saline conditions were mainly attributed to the improved stomata operation associated with higher rate of K delivery into the shoots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AM:

Arbuscular mycorrhizal

BSM:

Basic salt medium

Ci:

Intercellular CO2 concentration

DW:

Dry weight

FW:

Fresh weight

Gs:

Stomatal conductance

MDA:

Malondialdehyde

MIFE:

Micro-electrode ion flux estimation

PGPR:

Plant growth-promoting rhizobacteria

P. indica :

Piriformospora indica

Pn:

Net photosynthetic rate

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

Tr:

Transpiration

References

  • Abdelaziz ME, Kim D, Ali S, Fedoroff NV, Al-Babili S (2017) The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions. Plant Sci 263:107–115

    Article  CAS  PubMed  Google Scholar 

  • Achatz B, Rüden SV, Andrade D, Neumann E, Pons-Kühnemann J, Kogel KH, Franken P, Waller F (2010) Root colonization by Piriformospora indica, enhances grain yield in barley under diverse nutrient regimes by accelerating plant development. Plant Soil 333:59–70

    Article  CAS  Google Scholar 

  • Balliu A, Sallaku G, Rewald B (2015) AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability 7:15967–15981

    Article  CAS  Google Scholar 

  • Bose J, Rodrigo A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257

    Article  CAS  PubMed  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    Article  CAS  PubMed  Google Scholar 

  • Collins JC, Kerrigan AP (1974) The effect of kinetin and abscisic acid on water and ion transport in isolated maize roots. New Phytol 73:309–314

    Article  CAS  Google Scholar 

  • Cuin TA, Betts SA, Chalmandrier R, Shabala S (2008) A root’s ability to retain K+ correlates with salt tolerance in wheat. J Exp Bot 59:2697–2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan H, Li T, Sun X, Sun XZ, Zheng CS (2015) Effects of humic acid derived from sediments on the postharvest vase life extension in cut chrysanthemum flowers. Postharvest Biol Technol 101:82–87

    Article  CAS  Google Scholar 

  • Founier JM, Benlloch M, Díaz de la Guardia M (1987) Effect of abscisic acid on exudation of sunflower roots as affected by nutrient status, glucose level and aeration. Physiol Plant 69:675–679

    Article  Google Scholar 

  • Ghaffari MR, Ghabooli M, Khatabi B, Hajirezaei MR, Schweizer P, Salekdeh GH (2016) Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley. Plant Mol Biol 90:699–717

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E, Varma A, Narendra Tuteja N (2016) Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol 7:332

    Article  PubMed  PubMed Central  Google Scholar 

  • Han Y, Yin SY, Huang L (2015) Towards plant salinity tolerance-implications from ion transporters and biochemical regulation. Plant Growth Regul 76:13–23

    Article  CAS  Google Scholar 

  • Hu J, Ma Q, Kumar T, Duan HR, Zhang JL, Yuan HJ, Wang Q, Khan SA, Wang P, Wang SM (2016) ZxSKOR is important for salinity and drought tolerance of Zygophyllum xanthoxylum by maintaining K+ homeostasis. Plant Growth Regul 80:195–205

    Article  CAS  Google Scholar 

  • Ismail AM, Horie T (2017) Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annu Rev Plant Biol 68:405–434

    Article  CAS  PubMed  Google Scholar 

  • Janicka RM, Klobus G (2007) Modification of plasma membrane and vacuolar H+-ATPases in response to NaCl and ABA. J Plant Physiol 164:295–302

    Article  CAS  Google Scholar 

  • Jiang C, Cui Q, Feng K, Xu D, Li C, Zheng Q (2016) Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. Acta Physiol Plant 38:1–9

    Article  CAS  Google Scholar 

  • Jin H, Li A, Wang J, Bo Y (2016) Improvement of spatially and temporally continuous crop leaf area index by integration of CERES-Maize model and MODIS data. Eur J Agron 78:1–12

    Article  Google Scholar 

  • Jogawat A, Saha S, Bakshi M, Dayaman V, Kumar M, Dua M, Varma A, Oelmüller R, Tuteja N, Johri AK (2013) Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signal Behav 8:e26891

    Article  CAS  PubMed Central  Google Scholar 

  • Kobayashi N, Yamaji N, Yamamoto H, Okubo K, Ueno H, Costa A, Tanoi K, Matsumura H, Kashino M, Horiuchi T, Nayef MA, Shabala S, An G, Ma JF, Horie T (2017) OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice. Plant J 91:657–670

    Article  CAS  PubMed  Google Scholar 

  • Kollist H, Nuhkat M, Roelfsema MR (2014) Closing gaps: linking elements that control stomatal movement. New Phytol 203:44–62

    Article  CAS  PubMed  Google Scholar 

  • Li L, Li L, Wang XY, Zhu PY, Wu HQ, Qi ST (2017) Plant growth-promoting endophyte Piriformospora indica alleviates salinity stress in Medicago truncatula. Plant Physiol Biochem 119:211–223

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Yin L, Wang S, Zhang M, Deng X, Zhang S, Tanaka K (2015) Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environ Exp Bot 111:42–51

    Article  CAS  Google Scholar 

  • Misra BB, Acharya BR, Granot D, Assmann SM, Chen S (2015) The guard cell metabolome: functions in stomatal movement and global food security. Front Plant Sci 6:334

    Article  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murphy BR, Doohan FM, Hodkinson TR (2014) Yield increase induced by the fungal root endophyte Piriformospora indica in barley grown at low temperature is nutrient limited. Symbiosis 62:29–39

    Article  Google Scholar 

  • Newman IA (2001) Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant Cell Environ 24:1–14

    Article  CAS  PubMed  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peskan-Berghofer T, Vilches-Barro A, Muller TM, Glawischnig E, Reichelt M, Gershenzon J, Rausch T (2015) Sustained exposure to abscisic acid enhances the colonization potential of the mutualist fungus Piriformospora indica on Arabidopsis thaliana roots. New Phytol 208:873–886

    Article  CAS  PubMed  Google Scholar 

  • Roberts SK, Snowman BN (2000) The effects of ABA on channel-mediated K+ transport across higher plant roots. J Exp Bot 51:1585–1594

    Article  CAS  PubMed  Google Scholar 

  • Shabala S (2017) Signalling by potassium: another second messenger to add to the list? J Exp Bot 68:4003–4007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabala S, Hariadi Y (2005) Effects of magnesium availability on the activity of plasma membrane ion transporters and light-induced responses from broad bean leaf mesophyll. Planta 221:56–65

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Shabala L, Van Volkenburgh E (2003) Effect of calcium on root development and root ion fluxes in salinised barley seedlings. Funct Plant Biol 30:507–514

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Shabala S, Cuin T, Pang J, Percey W, Chen Z, Conn S, Eing C, Wegner L (2010) Xylem ionic relations and salinity tolerance in barley. Plant J 61:839–853

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Hariadi Y, Jacobsen SE (2013) Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density. J Plant Physiol 170:906–914

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, White RG, Djordjevic MA, Ruan YL, Mathesius U (2016) Root-to-shoot signalling: integration of diverse molecules, pathways and functions. Funct Plant Biol 43:87–104

    Article  CAS  PubMed  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151

    Article  CAS  PubMed  Google Scholar 

  • Shelden MC, Dias DA, Jayasinghe NS, Bacic A, Roessner U (2016) Root spatial metabolite profiling of two genotypes of barley (Hordeum vulgare L.) reveals differences in response to short-term salt stress. J Exp Bot 67:3731–3745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi HZ, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vahabi K, Dorcheh SK, Monajembashi S, Westmann M, Reichelt M, Falkenberg D, Hemmerich P, Sherameti I, Oelmüller R (2016) Stress promotes ArabidopsisPiriformospora indica interaction. Plant Signal Behav 11:e1136763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, Wettstein DV, Franken P, Kogel K (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Guan C, Wang P, Lv ML, Ma Q, Wu GQ, Bao AK, Zhang JL, Wang SM (2015) AtHKT1; 1 and AtHAK5 mediate low-affinity Na+ uptake in Arabidopsis thaliana under mild salt stress. Plant Growth Regul 75:615–623

    Article  CAS  Google Scholar 

  • Yang R, Yang T, Zhang H, Qi Y, Xing Y, Zhang N, Li R, Weeda S, Ren S, Ouyang B, Guo YD (2014) Hormone profiling and transcription analysis reveal a major role of ABA in tomato salt tolerance. Plant Physiol Biochem 77:23–34

    Article  CAS  PubMed  Google Scholar 

  • Zarea MJ, Hajinia S, Karimi N, Mohammadi GE, Rejali F, Varma A (2012) Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biol Biochem 45:139–146

    Article  CAS  Google Scholar 

  • Zhang M, Cao Y, Wang Z, Shi J, Liang X, Song W, Chen Q, Lai J, Jiang C (2017a) A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytol 217:1161–1176

    Article  CAS  PubMed  Google Scholar 

  • Zhang WY, Wang J, Xu L, Wang AA, Huang L, Du HW, Qiu LJ, Oelmüller R (2017b) Drought stress responses in maize are diminished by Piriformospora indica. Plant Signal Behav 13:e1414121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Shabala L, Cuin T, Huang X, Zhou MX, Munns R, Shabala S (2016) Nax loci affect SOS1-like Na+/H+ exchanger expression and activity in wheat. J Exp Bot 67:835–844

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support was provided by Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education (KF201605), and the open fund of Hubei Collaborative Innovation Centre for Grain Industry (LXT-16-10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sergey Shabala or Wen-Ying Zhang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10725_2018_431_MOESM1_ESM.doc

Fig. S1 Experimental protocols and inoculation examination: (a) A schematic diagram of 23 the experimental protocols employed in this study. b, c - P. indica colonization of maize roots. (b) Control, (c) Root segments stained with trypan blue showing colonization of Z. mays by P.indica (arrow). Fig. S2 Photos of plants taken 5 days after onset of salt stress: (a) 0 mM NaCl +P. indica, (b) 100 mM NaCl +P. indica, (c) 200 mM NaCl +P. indica, (d) 0 mM NaCl -P. indica, (e) 100 mM NaCl -P. indica, (f) 200 mM NaCl -P. indica. Fig. S3 Photos of roots taken 5 days after onset of salt stress. (a) 0 mM NaCl +P. indica, (b) 100 mM NaCl +P. indica, (c) 200 mM NaCl +P. indica, (d) 0 mM NaCl -P. indica, (e) 100 mM NaCl -P. indica, (f) 200 mM NaCl -P. indica. (DOC 1451 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, P., Xu, L., Wang, SS. et al. Piriformospora indica improves salinity stress tolerance in Zea mays L. plants by regulating Na+ and K+ loading in root and allocating K+ in shoot. Plant Growth Regul 86, 323–331 (2018). https://doi.org/10.1007/s10725-018-0431-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-018-0431-3

Keywords

Navigation